Host pathogen interactions important in the movement of Campylobacter jejuni from the broiler chicken gut to edible tissues (CampAttack)

Project Details

Description

Sustainable production of safe chicken is an international priority and it is estimated that in the next 20 years chicken production will have to quadruple to satisfy growing global demand. The key question is whether this can be done in a way that does not increase the public health threat of contaminated chicken meat and preserves chicken health and welfare. Most chicken meat consumed internationally is produced in large-scale intensive (broiler) systems and most birds in the UK (>75%) are Campylobacter-positive at retail, mainly with C. jejuni, posing a huge public health threat. Campylobacter is the most common cause of bacterial diarrhoea in the UK and despite millions of pounds of research funding it is estimated that contaminated chicken caused >500000 human campylobacteriosis cases in the UK in 2016 with around 100 deaths, mainly in elderly people. Infection is characterised by severe abdominal pain and acute (sometimes bloody) diarrhoea and costs the UK economy over £1 billion per year. In addition, Campylobacter are not only major chicken-associated human pathogens, they also compromise the health, welfare and performance of broilers.
Campylobacter contamination of chicken takes two forms. First, surface contamination of carcasses, as a result of spillage of gut contents during slaughter, can lead to cross-contamination in the kitchen. Second, and perhaps of greater importance than currently thought, is contamination within muscle and liver tissues, which increases the health risk by facilitating bacterial survival during cooking. Until recently it was believed that Campylobacter only colonised the lower gut of the chicken (the caecum). However, spread from the gut to edible tissues is associated with the ability of certain Campylobacter strains to colonise the upper intestine of the chicken, where the gut lining (mucosa) is more easily damaged. As Campylobacter comprise a diverse population in broilers, with different strains varying in their effects on gut integrity and their ability to spread to edible tissues like liver and muscle, it is important to better understand the host-pathogen interactions of different types if the bacteria are to be controlled in chickens and the public health threat reduced. In particular, it is essential to identify the key host immune responses and the bacterial genes most important in these interactions - and in colonisation of the whole gut and extra-intestinal spread. This information, which is currently not available, is essential for the development of immunity-based and other control measures.
This multidisciplinary research programme will enhance understanding of the influence of Campylobacter strain on bird gut health, host innate immune responses and spread to edible tissues and thus the public health threat. The quantitative information and modelling will be used to give direct advice to industry about Campylobacter infection biology in broiler chickens, providing an unprecedented basis for interventions to mitigate the on-going challenge of Campylobacter contamination in chicken meat. These interventions potentially include new vaccines and/or genetically more resistant chickens.
StatusFinished
Effective start/end date1/08/1831/07/21

Funding

  • Biotechnology and Biological Sciences Research Council

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 12 - Responsible Consumption and Production
  • SDG 15 - Life on Land

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.