Soils research to deliver Greenhouse Gas Removals and Abatement Technologies (SOILS-R-GGREAT)

Project Details

Description

GGR Consortium - Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT). Scenario modelling studies show that it is unlikely that we will be able to meet the target to limit climate warming to "well below 2 degrees C" outlined in the Paris Agreement without removing a significant quantity of greenhouse gases from the atmosphere. It appears to be virtually impossible to meet the aspirational target of 1.5 degrees C of warming without greenhouse gas removal (GGR) from the atmosphere. Given the importance of GGR for climate stabilization, the global potential, feasibility, barriers and impacts of GGR technologies need to be assessed. Preliminary analysis suggests that widespread implementation of GGRs could have significant impacts on land competition, greenhouse gas emissions, physical climate feedbacks (e.g. albedo), water requirements, nutrient use, energy and cost, but that soil carbon sequestration and biochar used as GGR practices have significant potential for GGR (4-6 thousand million tonnes of carbon dioxide per year, together), and can do so with much less competition for land, water and nutrients than, for example bioenergy with carbon capture and storage and afforestation, and at much lower cost than enhanced mineral weathering and direct air capture of carbon dioxide. In addition, soil-based GGRs could help deliver other Sustainable Development Goals (SDGs), particularly 1, 2, 13 and 15 (poverty, hunger, climate and life on land). Yet constraints due to high uncertainties about the GGR achievable, the need for site-specific options and incentives, social and ecological impacts, and the risk of impermanence have limited soil-based GGR to date. In this project, we will focus on soil carbon sequestration through improved land management, and the addition of biochar to soils to increase soil carbon storage. We will work closely with other consortia to ensure consistency across assumptions about land and resource availability. In the Soils-R-GGREAT project we have harnessed the best expertise in the UK on soils and biochar to provide a comprehensive global assessment of soil-based GGRs.

We will use a combination of life cycle assessment (LCA), scenario database analysis, network data analysis, meta-analysis, biophysical modelling, economic modelling, stakeholder engagement and expert consultation to deliver the most rigorous and comprehensive global assessment of potential, feasibility, barriers and impacts of soil-based GGRs. The achievements / outputs from the project will be an assessment of the technical and cost-effective potential for soil-based GGRs globally and regionally, identification of technical options, an assessment of the socio-cultural-ecological impacts of soil-based GGRs and their ability to co-deliver to SDGs 1,2,13,15, an analysis of the current policy barriers preventing implementation and options for future policies to enable widespread adoption of soil-based GGRs, and an assessment of how soil-based GGRs can be integrated into portfolios of other GGR technologies, and other greenhouse gas emission reduction efforts. Interim results will be published by the end of 2017 to feed into the IPCC Special Reports on the "1.5 degree C target", and "land use and climate change".
StatusFinished
Effective start/end date20/06/1720/06/21

Funding

  • Natural Environment Research Council

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy
  • SDG 13 - Climate Action
  • SDG 15 - Life on Land

ASJC Scopus Subject Areas

  • Management, Monitoring, Policy and Law
  • Renewable Energy, Sustainability and the Environment
  • Geography, Planning and Development
  • Strategy and Management
  • Environmental Science(all)
  • Industrial and Manufacturing Engineering
  • Environmental Engineering

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.