TY - JOUR
T1 - A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland
AU - Cloy, JM
AU - Farmer, JG
AU - Graham, MC
AU - MacKenzie, AB
AU - Cook, GT
PY - 2005/10/12
Y1 - 2005/10/12
N2 - Two cores collected in 2001 and 2004 from Flanders Moss ombrotrophic peat bog in central Scotland were dated (14C, 210Pb) and analysed (ICP-OES, ICP-MS) to derive and compare the historical atmospheric deposition records of Sb and Pb over the past 2500 years. After correction, via Sc, for contributions from soil dust, depositional fluxes of Sb and Pb peaked from ca. 1920–1960 A.D., with >95% of the anthropogenic inventories deposited post-1800 A.D. Over the past two centuries, trends in Sb and Pb deposition have been broadly similar, with fluctuations in the anthropogenic Sb/Pb ratio reflecting temporal variations in the relative input from emission sources such as the mining and smelting of Pb ores (in which Sb is commonly present, as at Leadhills/Wanlockhead in southern Scotland), combustion of coal (for which the Sb/Pb ratio is approximately an order of magnitude greater than in Pb ores) and exhaust emissions (Pb from leaded petrol) and abrasion products from the brake linings (Sb from heat-resistant Sb compounds) of automobiles. The influence of leaded petrol has been most noticeable in recent decades, firstly through the resultant minima in Sb/Pb and 206Pb/207Pb ratios (the latter arising from the use of less radiogenic Australian Pb in alkylPb additives) and then, during its phasing out and the adoption of unleaded petrol, complete by 2000 A.D., the subsequent increase in both Sb/Pb and 206Pb/207Pb ratios. The extent of the 20th century maximum anthropogenic enrichment of Sb and Pb, relative to the natural Sc-normalised levels of the Upper Continental Crust, was similar at ∼50- to 100-fold. Prior to 1800 A.D., the influence of metallurgical activities on Sb and Pb concentrations in the peat cores during both the Mediaeval and Roman/pre-Roman periods was discernible, small Sb and Pb peaks during the latter appearing attributable, on the basis of Pb isotopic composition, to the mining/smelting of Pb ores indigenous to Britain.
AB - Two cores collected in 2001 and 2004 from Flanders Moss ombrotrophic peat bog in central Scotland were dated (14C, 210Pb) and analysed (ICP-OES, ICP-MS) to derive and compare the historical atmospheric deposition records of Sb and Pb over the past 2500 years. After correction, via Sc, for contributions from soil dust, depositional fluxes of Sb and Pb peaked from ca. 1920–1960 A.D., with >95% of the anthropogenic inventories deposited post-1800 A.D. Over the past two centuries, trends in Sb and Pb deposition have been broadly similar, with fluctuations in the anthropogenic Sb/Pb ratio reflecting temporal variations in the relative input from emission sources such as the mining and smelting of Pb ores (in which Sb is commonly present, as at Leadhills/Wanlockhead in southern Scotland), combustion of coal (for which the Sb/Pb ratio is approximately an order of magnitude greater than in Pb ores) and exhaust emissions (Pb from leaded petrol) and abrasion products from the brake linings (Sb from heat-resistant Sb compounds) of automobiles. The influence of leaded petrol has been most noticeable in recent decades, firstly through the resultant minima in Sb/Pb and 206Pb/207Pb ratios (the latter arising from the use of less radiogenic Australian Pb in alkylPb additives) and then, during its phasing out and the adoption of unleaded petrol, complete by 2000 A.D., the subsequent increase in both Sb/Pb and 206Pb/207Pb ratios. The extent of the 20th century maximum anthropogenic enrichment of Sb and Pb, relative to the natural Sc-normalised levels of the Upper Continental Crust, was similar at ∼50- to 100-fold. Prior to 1800 A.D., the influence of metallurgical activities on Sb and Pb concentrations in the peat cores during both the Mediaeval and Roman/pre-Roman periods was discernible, small Sb and Pb peaks during the latter appearing attributable, on the basis of Pb isotopic composition, to the mining/smelting of Pb ores indigenous to Britain.
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000233459000002&KeyUID=WOS:000233459000002
U2 - 10.1039/b510987f
DO - 10.1039/b510987f
M3 - Article
SN - 2050-7887
VL - 7
SP - 1137
EP - 1147
JO - Journal of Environmental Monitoring
JF - Journal of Environmental Monitoring
IS - 12
ER -