Abstract
Multiparent Advanced Generation Intercross (MAGIC) mapping populations offer unique opportunities and challenges for marker and QTL mapping in crop species. We have constructed the first eight‐parent MAGIC genetic map for wheat, comprising 18 601 SNP markers. We validated the accuracy of our map against the wheat genome sequence and found an improvement in accuracy compared to published genetic maps. Our map shows a notable increase in precision resulting from the three generations of intercrossing required to create the population. This is most pronounced in the pericentromeric regions of the chromosomes. Sixteen percent of mapped markers exhibited segregation distortion (SD) with many occurring in long (>20 cM) blocks. Some of the longest and most distorted blocks were collinear with noncentromeric high‐marker‐density regions of the genome, suggesting they were candidates for introgression fragments introduced into the bread wheat gene pool from other grass species. We investigated two of these linkage blocks in detail and found strong evidence that one on chromosome 4AL, showing SD against the founder Robigus, is an interspecific introgression fragment. The completed map is available from http://www.niab.com/pages/id/326/Resources.
Original language | English |
---|---|
Pages (from-to) | 1406-1417 |
Journal | Plant Biotechnology Journal |
Volume | 14 |
Issue number | 6 |
Early online date | 23 Jan 2016 |
DOIs | |
Publication status | Print publication - Jun 2016 |
Externally published | Yes |
Keywords
- MAGIC
- wheat
- Genetic mapping