TY - JOUR
T1 - Accumulation, distribution, and speciation of arsenic in wheat grain
AU - Zhao, Fang Jie
AU - Stroud, Jacqueline L.
AU - Eagling, Tristan
AU - Dunham, Sarah J.
AU - McGrath, Steve P.
AU - Shewry, Peter R.
PY - 2010/7/15
Y1 - 2010/7/15
N2 - Food can be an important source of inorganic As for human intake. Recent studies have focused on rice, while little information is available on As accumulation, distribution, and speciation in wheat, which is the second most important food grain cereal. Grain samples of 26 wheat cultivars grown in five field trials located in productive farming regions in Europe were therefore analyzed for As concentration and speciation. Grain from four trials contained low concentrations of total As (7.7 ± 5.4 μg kg-1), reflecting low levels of As in the soils (1.3-11 mg kg-1). In contrast, at one of the trial sites the As level in the soil was greater (29 mg kg-1), and much higher As concentrations (69 ± 17 μg kg-1) were present in the wheat grain. Milling of wheat grain into bran and white flour fraction showed the concentration of As in the bran, with a 3.8-4.7-fold higher As concentration than in the white flour. Two methods (a phosphate buffer solution and 1% HNO3) were used to extract As species from wholemeal, bran, and white flour of wheat, with average extraction efficiencies of 65% and 88%, respectively. Only inorganic As was found in the extracts, with no methylated As being detected. The contribution of wheat to human intake of inorganic As is small for wheat crops grown in uncontaminated soils but becomes significant for those grown in soils with elevated As. In the latter case, milling can be used to reduce the As concentration in the white flour.
AB - Food can be an important source of inorganic As for human intake. Recent studies have focused on rice, while little information is available on As accumulation, distribution, and speciation in wheat, which is the second most important food grain cereal. Grain samples of 26 wheat cultivars grown in five field trials located in productive farming regions in Europe were therefore analyzed for As concentration and speciation. Grain from four trials contained low concentrations of total As (7.7 ± 5.4 μg kg-1), reflecting low levels of As in the soils (1.3-11 mg kg-1). In contrast, at one of the trial sites the As level in the soil was greater (29 mg kg-1), and much higher As concentrations (69 ± 17 μg kg-1) were present in the wheat grain. Milling of wheat grain into bran and white flour fraction showed the concentration of As in the bran, with a 3.8-4.7-fold higher As concentration than in the white flour. Two methods (a phosphate buffer solution and 1% HNO3) were used to extract As species from wholemeal, bran, and white flour of wheat, with average extraction efficiencies of 65% and 88%, respectively. Only inorganic As was found in the extracts, with no methylated As being detected. The contribution of wheat to human intake of inorganic As is small for wheat crops grown in uncontaminated soils but becomes significant for those grown in soils with elevated As. In the latter case, milling can be used to reduce the As concentration in the white flour.
UR - http://www.scopus.com/inward/record.url?scp=77954618253&partnerID=8YFLogxK
U2 - 10.1021/es100765g
DO - 10.1021/es100765g
M3 - Article
C2 - 20578703
AN - SCOPUS:77954618253
SN - 0013-936X
VL - 44
SP - 5464
EP - 5468
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 14
ER -