Abstract
Management of plant residues plays an important role in maintaining soil quality and nutrient availability for plants and microbes. However, there is considerable uncertainty regarding the factors controlling residue decomposition and their effects on greenhouse gas (GHG) emissions from the soil. This uncertainty is created both by the complexity of the processes involved and limitations in the methodologies commonly used to quantify GHG emissions. We therefore investigated the addition of two soil residues (durum wheat and faba bean) with similar C:N ratios but contrasting fibres, lignin and cellulose contents on nutrient dynamics and GHG emission from two contrasting soils: a low-soil organic carbon (SOC), high pH clay soil (Chromic Haploxerert) and a high-SOC, low pH sandy-loam soil (Eutric Cambisol). In addition, we compared the effectiveness of the use of an Infrared Gas Analyzer (IRGA) and Photoacoustic Gas Analyser (PGA) to measure GHG emissions with more conventional gas chromatography (GC). There was a strong correlation between the different measurement techniques which strengthens the case for the use of continuous measurements approaches involving IRGA and PGA analyses in studies of this type. The unamended Cambisol released 286% more CO2 and 30% more N2O than the Haploxerert. Addition of plant residues increased CO2 emissions more in the Haploxerert than Cambisol and N2O emission more in the Cambisol than in the Haploxerert. This may have been a consequence of the high N stabilization efficiency of the Haploxerert resulting from its high pH and the effect of the clay on mineralization of native organic matter. These results have implications management of plant residues in different soil types.
Original language | English |
---|---|
Pages (from-to) | 1 - 8 |
Number of pages | 8 |
Journal | Biology and Fertility of Soils |
Volume | 53 |
Issue number | 5 |
Early online date | 13 Apr 2017 |
DOIs | |
Publication status | First published - 13 Apr 2017 |
Bibliographical note
1020954Keywords
- Carbon dioxide
- Crop residues
- Greenhouse gas
- Nitrous oxide
- Residue decomposition