Animal Behaviour Packs a Punch: From Parasitism to Production, Pollution and Prevention in Grazing Livestock

LA Smith*, NJ Fox*, Glenn Marion, NJL Booth, AM Morris, S Athanasiadou, MR Hutchings

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

1 Downloads (Pure)


Behaviour is often the fundamental driver of disease transmission, where behaviours of individuals can be seen to scale up to epidemiological patterns seen at the population level. Here we focus on animal behaviour, and its role in parasite transmission to track its knock-on consequences for parasitism, production and pollution. Livestock face a nutrition versus parasitism trade-off in grazing environments where faeces creates both a nutritional benefit, fertilizing the surrounding sward, but also a parasite risk from infective nematode larvae contaminating the sward. The grazing decisions of ruminants depend on the perceived costs and benefits of the trade-off, which depend on the variations in both environmental (e.g., amounts of faeces) and animal factors (e.g., physiological state). Such grazing decisions determine the intake of both nutrients and parasites, affecting livestock growth rates and production efficiency. This impacts on the greenhouse gas costs of ruminant livestock production via two main mechanisms: (1) slower growth results in longer durations on-farm and (2) parasitised animals produce more methane per unit food intake. However, the sensitivity of behaviour to host parasite state offers opportunities for early detection of parasitism and control. Remote monitoring technology such as accelerometers can detect parasite-induced sickness behaviours soon after exposure, before impacts on growth, and thus may be used for targeting individuals for early treatment. We conclude that livestock host x parasite interactions are at the centre of the global challenges of food security and climate change, and that understanding livestock behaviour can contribute to solving both.
Original languageEnglish
Article number1876
Number of pages13
Issue number13
Early online date25 Jun 2024
Publication statusFirst published - 25 Jun 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.


  • behaviour
  • parasite
  • grazing
  • methane
  • trade-off
  • ruminant
  • growth
  • efficiency
  • resistance


Dive into the research topics of 'Animal Behaviour Packs a Punch: From Parasitism to Production, Pollution and Prevention in Grazing Livestock'. Together they form a unique fingerprint.

Cite this