Antimicrobial resistance profiles and molecular epidemiology of Klebsiella pneumoniae isolates from Scottish bovine mastitis cases

    Research output: Contribution to journalArticlepeer-review

    1 Downloads (Pure)

    Abstract

    Klebsiella pneumoniae are opportunistic pathogens which can cause mastitis in dairy cattle. K. pneumoniae mastitis often has a poor cure rate and can lead to the development of chronic infection, which has an impact on both health and production. However, there are few studies which aim to fully characterize K. pneumoniae by whole-genome sequencing from bovine mastitis cases. Here, K. pneumoniae isolates associated with mastitis in dairy cattle were identified using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and whole-genome sequencing. Furthermore, whole-genome sequence data were used for phylogenetic analyses and both virulence and antimicrobial resistance (AMR) prediction, in parallel with phenotypic AMR testing. Forty-two isolates identified as K. pneumoniae were subject to whole-genome sequencing, with 31 multi-locus sequence types being observed, suggesting the source of these isolates was likely environmental. Isolates were examined for key virulence determinants encoding acquired siderophores, colibactin, and hypermucoidy. The majority of these were absent, except for ybST (encoding yersiniabactin) which was present in six isolates. Across the dataset, there were notable levels of phenotypic AMR against streptomycin (26.2%) and tetracycline (19%), and intermediate susceptibility to cephalexin (26.2%) and neomycin (21.4%). Of importance was the detection of two ESBL-producing isolates, which demonstrated multi-drug resistance to amoxicillin-clavulanic acid, streptomycin, tetracycline, cefotaxime, cephalexin, and cefquinome.
    Original languageEnglish
    Article numbere15
    JournalEpidemiology and Infection
    Volume153
    DOIs
    Publication statusPrint publication - 17 Jan 2025

    Bibliographical note

    Publisher Copyright:
    © The Author(s), 2025. Published by Cambridge University Press.

    Keywords

    • AMR
    • Klebsiella
    • MALDI-TOF
    • WGS
    • mastitis

    Fingerprint

    Dive into the research topics of 'Antimicrobial resistance profiles and molecular epidemiology of Klebsiella pneumoniae isolates from Scottish bovine mastitis cases'. Together they form a unique fingerprint.

    Cite this