Abstract
Phosphorus (P) fertilizers have a dramatic effect on agricultural productivity, but conventional methods of application result in only limited recovery of the applied P. Given the increasing volatility in rock phosphate prices, more efficient strategies for P fertilizer use would be of economic and environmental benefit in the drive for sustainable intensification. This study used a combination of controlled-environment experiments and radioisotopic labeling to investigate the fertilizer use efficiency of a combination of seed (grain) dressing and foliar applications of P to spring wheat (Triticum aestivum L.). Radioisotopic labeling showed that the application of foliar P in the presence of photosynthetic light substantially increased both P-uptake into the leaf and P-mobilization within the plant, especially when an adjuvant was used. When compared with soil application of inorganic P buried into the rooting zone, a combination of a 3 μmol seed dressing and three successive 46.3 μmol plant−1 foliar applications were far more efficient at providing P fertilization benefits in P-limiting conditions. We conclude that a combination of seed dressing and foliar applications of P is potentially a better alternative to conventional soil-based application, offering greater efficiency in use of applied P both in terms of P-uptake rate and grain yield. Further work is required to evaluate whether these results can be obtained under a range of field conditions.
Original language | English |
---|---|
Article number | 605655 |
Journal | Frontiers in Agronomy |
Volume | 2 |
Early online date | 4 Dec 2020 |
DOIs | |
Publication status | First published - 4 Dec 2020 |
Keywords
- Agronomy
- crop nutrition
- foliar feeding
- food security
- integrated nutrient management
- precision agriculture
- fertilizer management
- phosphorus use efficiency (PUE)