TY - JOUR
T1 - Disentangling the roles of climate, propagule pressure and land use on the current and potential elevational distribution of the invasive weed Oxalis pes-caprae L. on Crete
AU - Ross, Louise C.
AU - Lambdon, Philip W.
AU - Hulme, Philip E.
PY - 2008/10/20
Y1 - 2008/10/20
N2 - Climatic warming and land use change are likely to facilitate range expansions in invasive plant species, although the ability to predict such changes requires a better mechanistic understanding of the biological limits of populations. The introduced weed Oxalis pes-caprae, a significant pest of cultivation in many Mediterranean-type ecosystems, presents a suitable case study. The species distribution in the Mediterranean Basin closely follows that of olive cultivation, limited to below 600 m; yet its potential to colonise vulnerable areas at higher elevations has yet to be adequately assessed. To investigate the possibility, plant performance was assessed by experimentally sowing O. pes-caprae bulbils along an altitudinal gradient in the Lefka Ori mountains, Crete. The survivorship and bulbil biomass of the resulting plants all declined significantly with elevation, irrespective of soil type, initial bulbil size or seasonal variation. Whilst plants survived vegetatively up to 1400 m, seasonal bulbil productivity, likely to be critical to population viability, exceeded that of the sown bulbil biomass only below 750 m. These data indicate that the current elevation of O. pes-caprae is close to, but not at, its current climatic limit, and that low propagule pressure and scarcity of suitable habitat probably also act to limit the altitudinal distribution. Plant performance was correlated strongly with the duration of spring snow cover. Despite a 2 °C difference in mean spring temperatures in the 2 years of study, the predicted elevational change was only 37 m higher in the milder conditions. Overall, our results suggest that while O. pes-caprae performance is strongly linked to climate and is currently close to its climatic limit on Crete, there is limited scope for further spread unless land use and/or propagule pressure change at higher elevations. For this species, these elements are likely to be more significant drivers of invasion risk than the predicted changes of future climates.
AB - Climatic warming and land use change are likely to facilitate range expansions in invasive plant species, although the ability to predict such changes requires a better mechanistic understanding of the biological limits of populations. The introduced weed Oxalis pes-caprae, a significant pest of cultivation in many Mediterranean-type ecosystems, presents a suitable case study. The species distribution in the Mediterranean Basin closely follows that of olive cultivation, limited to below 600 m; yet its potential to colonise vulnerable areas at higher elevations has yet to be adequately assessed. To investigate the possibility, plant performance was assessed by experimentally sowing O. pes-caprae bulbils along an altitudinal gradient in the Lefka Ori mountains, Crete. The survivorship and bulbil biomass of the resulting plants all declined significantly with elevation, irrespective of soil type, initial bulbil size or seasonal variation. Whilst plants survived vegetatively up to 1400 m, seasonal bulbil productivity, likely to be critical to population viability, exceeded that of the sown bulbil biomass only below 750 m. These data indicate that the current elevation of O. pes-caprae is close to, but not at, its current climatic limit, and that low propagule pressure and scarcity of suitable habitat probably also act to limit the altitudinal distribution. Plant performance was correlated strongly with the duration of spring snow cover. Despite a 2 °C difference in mean spring temperatures in the 2 years of study, the predicted elevational change was only 37 m higher in the milder conditions. Overall, our results suggest that while O. pes-caprae performance is strongly linked to climate and is currently close to its climatic limit on Crete, there is limited scope for further spread unless land use and/or propagule pressure change at higher elevations. For this species, these elements are likely to be more significant drivers of invasion risk than the predicted changes of future climates.
KW - Altitude
KW - Biological invasions
KW - Climate change
KW - Land use change
KW - Population viability
KW - Propagule pressure
UR - http://www.scopus.com/inward/record.url?scp=51549104041&partnerID=8YFLogxK
U2 - 10.1016/j.ppees.2008.06.001
DO - 10.1016/j.ppees.2008.06.001
M3 - Article
AN - SCOPUS:51549104041
SN - 1433-8319
VL - 10
SP - 251
EP - 258
JO - Perspectives in Plant Ecology, Evolution and Systematics
JF - Perspectives in Plant Ecology, Evolution and Systematics
IS - 4
ER -