Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

Reimo Kindler, Jan Siemens*, Klaus Kaiser, David C. Walmsley, Christian Bernhofer, Nina Buchmann, Pierre Cellier, Werner Eugster, Gerd Gleixner, Thomas Grunwald, Alexander Heim, Andreas Ibrom, Stephanie K. Jones, Mike Jones, Katja Klumpp, Werner Kutsch, Klaus Steenberg Larsen, Simon Lehuger, Benjamin Loubet, Rebecca MckenzieEddy Moors, Bruce Osborne, Kim Pilegaard, Corinna Rebmann, Matthew Saunders, Michael W.I. Schmidt, Marion Schrumpf, Janine Seyfferth, Ute Skiba, Jean Francois Soussana, Mark A. Sutton, Cindy Tefs, Bernhard Vowinckel, Matthias J. Zeeman, Martin Kaupenjohann

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

380 Citations (Scopus)


Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9gm-2yr-1 for forests, 24.1±7.2gm-2yr-1 for grasslands, and 14.6±4.8gm-2yr-1 for croplands. DOC leaching equalled 3.5±1.3gm-2yr-1 for forests, 5.3±2.0gm-2yr-1 for grasslands, and 4.1±1.3gm-2yr-1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0gCm-2yr-1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5-98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24-105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.

Original languageEnglish
Pages (from-to)1167-1185
Number of pages19
JournalGlobal Change Biology
Issue number2
Publication statusPrint publication - Feb 2011
Externally publishedYes


  • Carbon cycle
  • Carbon sequestration
  • DIC
  • Dissolved inorganic carbon
  • Dissolved organic carbon
  • DOC
  • Methane
  • Net biome productivity
  • Net ecosystem exchange


Dive into the research topics of 'Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance'. Together they form a unique fingerprint.

Cite this