Abstract
Food odour is a potent stimulus of food intake. Odour coding in the brain occurs in synergy or competition with other sensory information and internal signals. For eliciting feeding behaviour, food odour coding has to gain signification through enrichment with additional labelling in the brain. Since the ventral striatum, at the crossroads of olfactory and reward pathways, receives a rich dopaminergic innervation, we hypothesized that dopamine plays a role in food odour information processing in the ventral striatum. Using single neurones recordings in anesthetised rats, we show that some ventral striatum neurones respond to food odour. This neuronal network displays a variety of responses (excitation, inhibition, rhythmic activity in phase with respiration). The localization of recorded neurones in a 3-dimensional brain model suggests the spatial segregation of this food-odour responsive population. Using local field potentials recordings, we found that the neural population response to food odour was characterized by an increase of power in the beta-band frequency. This response was modulated by dopamine, as evidenced by its depression following administration of the dopaminergic D1 and D2 antagonists SCH23390 and raclopride. Our results suggest that dopamine improves food odour processing in the ventral striatum.
Original language | English |
---|---|
Article number | 1126 |
Journal | Biomedicines |
Volume | 10 |
Issue number | 5 |
Early online date | 12 May 2022 |
DOIs | |
Publication status | First published - 12 May 2022 |
Externally published | Yes |
Keywords
- food odour
- dopamine
- ventral striatum