Energy profiling of dairy cows from routine milk mid-infrared analysis: Energy Profiling From MIR Spectra

SL Smith, SJ Denholm*, MP Coffey, E Wall

*Corresponding author for this work

Research output: Contribution to journalArticle

2 Downloads (Pure)

Abstract

The balance of body energy within and across lactations can have health and fertility consequences for the dairy cow. This study aimed to create a large calibration data set of dairy cow body energy traits across the cow's productive life, with concurrent milk mid-infrared (MIR) spectral data, to generate a prediction tool for use in commercial dairy herds. Detailed phenotypic data from 1,101 Holstein Friesian cows from the Langhill research herd (SRUC, Scotland) were used to generate energy balance (EB) and effective energy intake (EI), both in megajoules per day. Pretreatment of spectral data involved standardization to account for drift over time and machine. Body energy estimates were aligned with their spectral data to generate a prediction of these traits based on milk MIR spectroscopy. After data edits, partial least squares analysis generated prediction equations with a coefficient of determination from split sample 10-fold cross validation of 0.77 and 0.75 for EB and EI, respectively. These prediction equations were applied to national milk MIR spectra on over 11 million animal test dates (January 2013 to December 2016) from 4,453 farms. The predictions generated from these were subject to phenotypic analyses with a fixed regression model highlighting differences between the main dairy breeds in terms of energy traits. Genetic analyses generated heritability estimates for EB and EI ranging from 0.12 to 0.17 and 0.13 to 0.15, respectively. This study shows that MIR-based predictions from routinely collected national data can be used to generate predictions of dairy cow energy turnover profiles for both animal management and genetic improvement of such difficult and expensive-to-record traits.
Original languageEnglish
Number of pages11
JournalJournal of Dairy Science
Early online date3 Oct 2019
DOIs
Publication statusFirst published - 3 Oct 2019

Fingerprint

Energy Intake
Milk
dairy cows
milk
prediction
energy
energy balance
spectral analysis
Scotland
energy intake
Least-Squares Analysis
Lactation
Calibration
Fertility
Spectrum Analysis
cows
Health
dairy breeds
animal genetics
animal tests

Keywords

  • Dairy cow
  • Energy balance
  • Mid-infrared spectroscopy
  • Genetics

Cite this

@article{f39b1cc9f7434df7b9d9f6ad708dff4a,
title = "Energy profiling of dairy cows from routine milk mid-infrared analysis: Energy Profiling From MIR Spectra",
abstract = "The balance of body energy within and across lactations can have health and fertility consequences for the dairy cow. This study aimed to create a large calibration data set of dairy cow body energy traits across the cow's productive life, with concurrent milk mid-infrared (MIR) spectral data, to generate a prediction tool for use in commercial dairy herds. Detailed phenotypic data from 1,101 Holstein Friesian cows from the Langhill research herd (SRUC, Scotland) were used to generate energy balance (EB) and effective energy intake (EI), both in megajoules per day. Pretreatment of spectral data involved standardization to account for drift over time and machine. Body energy estimates were aligned with their spectral data to generate a prediction of these traits based on milk MIR spectroscopy. After data edits, partial least squares analysis generated prediction equations with a coefficient of determination from split sample 10-fold cross validation of 0.77 and 0.75 for EB and EI, respectively. These prediction equations were applied to national milk MIR spectra on over 11 million animal test dates (January 2013 to December 2016) from 4,453 farms. The predictions generated from these were subject to phenotypic analyses with a fixed regression model highlighting differences between the main dairy breeds in terms of energy traits. Genetic analyses generated heritability estimates for EB and EI ranging from 0.12 to 0.17 and 0.13 to 0.15, respectively. This study shows that MIR-based predictions from routinely collected national data can be used to generate predictions of dairy cow energy turnover profiles for both animal management and genetic improvement of such difficult and expensive-to-record traits.",
keywords = "Dairy cow, Energy balance, Mid-infrared spectroscopy, Genetics",
author = "SL Smith and SJ Denholm and MP Coffey and E Wall",
year = "2019",
month = "10",
day = "3",
doi = "10.3168/jds.2018-16112",
language = "English",
journal = "Journal of Dairy Science",
issn = "0022-0302",
publisher = "American Dairy Science Association",

}

TY - JOUR

T1 - Energy profiling of dairy cows from routine milk mid-infrared analysis

T2 - Energy Profiling From MIR Spectra

AU - Smith, SL

AU - Denholm, SJ

AU - Coffey, MP

AU - Wall, E

PY - 2019/10/3

Y1 - 2019/10/3

N2 - The balance of body energy within and across lactations can have health and fertility consequences for the dairy cow. This study aimed to create a large calibration data set of dairy cow body energy traits across the cow's productive life, with concurrent milk mid-infrared (MIR) spectral data, to generate a prediction tool for use in commercial dairy herds. Detailed phenotypic data from 1,101 Holstein Friesian cows from the Langhill research herd (SRUC, Scotland) were used to generate energy balance (EB) and effective energy intake (EI), both in megajoules per day. Pretreatment of spectral data involved standardization to account for drift over time and machine. Body energy estimates were aligned with their spectral data to generate a prediction of these traits based on milk MIR spectroscopy. After data edits, partial least squares analysis generated prediction equations with a coefficient of determination from split sample 10-fold cross validation of 0.77 and 0.75 for EB and EI, respectively. These prediction equations were applied to national milk MIR spectra on over 11 million animal test dates (January 2013 to December 2016) from 4,453 farms. The predictions generated from these were subject to phenotypic analyses with a fixed regression model highlighting differences between the main dairy breeds in terms of energy traits. Genetic analyses generated heritability estimates for EB and EI ranging from 0.12 to 0.17 and 0.13 to 0.15, respectively. This study shows that MIR-based predictions from routinely collected national data can be used to generate predictions of dairy cow energy turnover profiles for both animal management and genetic improvement of such difficult and expensive-to-record traits.

AB - The balance of body energy within and across lactations can have health and fertility consequences for the dairy cow. This study aimed to create a large calibration data set of dairy cow body energy traits across the cow's productive life, with concurrent milk mid-infrared (MIR) spectral data, to generate a prediction tool for use in commercial dairy herds. Detailed phenotypic data from 1,101 Holstein Friesian cows from the Langhill research herd (SRUC, Scotland) were used to generate energy balance (EB) and effective energy intake (EI), both in megajoules per day. Pretreatment of spectral data involved standardization to account for drift over time and machine. Body energy estimates were aligned with their spectral data to generate a prediction of these traits based on milk MIR spectroscopy. After data edits, partial least squares analysis generated prediction equations with a coefficient of determination from split sample 10-fold cross validation of 0.77 and 0.75 for EB and EI, respectively. These prediction equations were applied to national milk MIR spectra on over 11 million animal test dates (January 2013 to December 2016) from 4,453 farms. The predictions generated from these were subject to phenotypic analyses with a fixed regression model highlighting differences between the main dairy breeds in terms of energy traits. Genetic analyses generated heritability estimates for EB and EI ranging from 0.12 to 0.17 and 0.13 to 0.15, respectively. This study shows that MIR-based predictions from routinely collected national data can be used to generate predictions of dairy cow energy turnover profiles for both animal management and genetic improvement of such difficult and expensive-to-record traits.

KW - Dairy cow

KW - Energy balance

KW - Mid-infrared spectroscopy

KW - Genetics

U2 - 10.3168/jds.2018-16112

DO - 10.3168/jds.2018-16112

M3 - Article

JO - Journal of Dairy Science

JF - Journal of Dairy Science

SN - 0022-0302

ER -