EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae

PM Morrison, Patricia Harris, Charlotte Maltin, Dai Grove-White, CM Argo*

*Corresponding author for this work

Research output: Contribution to journalArticle

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

Anatomically distinct adipose tissues represent variable risks to metabolic health in man and some other mammals. Quantitative-imaging of internal adipose depots is problematic in large animals and associations between regional adiposity and health are poorly understood. This study aimed to develop and test a semi-quantitative system (EQUIFAT) which could be applied to regional adipose tissues. Anatomically-defined, photographic images of adipose depots (omental, mesenteric, epicardial, rump) were collected from 38 animals immediately post-mortem. Images were ranked and depot-specific descriptors were developed (1 = no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point scores. The repeatability and reliability of EQUIFAT was independently tested by 24 observers. When half scores were permitted, inter-observer agreement was substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate (average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and substantial agreement (epicardial and rump) between attempts. A further 207 animals were evaluated ante-mortem (age, height, breed-type, gender, body condition score [BCS]) and again immediately post-mortem (EQUIFAT scores, carcass weight). Multivariable, random effect linear regression models were fitted (breed as random effect; BCS as outcome variable). Only height, carcass weight, omental and retroperitoneal EQUIFAT scores remained as explanatory variables in the final model. The EQUIFAT scores developed here demonstrate clear functional differences between regional adipose depots and future studies could be directed towards describing associations between adiposity and disease risk in surgical and post-mortem situations.
Original languageEnglish
Article numbere0173753
JournalPLoS ONE
Volume12
Issue number3
Early online date15 Mar 2017
DOIs
Publication statusFirst published - 15 Mar 2017
Externally publishedYes

Fingerprint

Equidae
rump
adipose tissue
Adipose Tissue
Animals
Adiposity
adiposity
Tissue
carcass weight
repeatability
body condition
Linear Models
Fats
Health
breeds
Men's Health
Weights and Measures
Somatotypes
animals
Mammals

Cite this

Morrison, PM ; Harris, Patricia ; Maltin, Charlotte ; Grove-White, Dai ; Argo, CM. / EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae. In: PLoS ONE. 2017 ; Vol. 12, No. 3.
@article{8a03705c9e1447abbcd68bfcadbb94b8,
title = "EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae",
abstract = "Anatomically distinct adipose tissues represent variable risks to metabolic health in man and some other mammals. Quantitative-imaging of internal adipose depots is problematic in large animals and associations between regional adiposity and health are poorly understood. This study aimed to develop and test a semi-quantitative system (EQUIFAT) which could be applied to regional adipose tissues. Anatomically-defined, photographic images of adipose depots (omental, mesenteric, epicardial, rump) were collected from 38 animals immediately post-mortem. Images were ranked and depot-specific descriptors were developed (1 = no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point scores. The repeatability and reliability of EQUIFAT was independently tested by 24 observers. When half scores were permitted, inter-observer agreement was substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate (average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and substantial agreement (epicardial and rump) between attempts. A further 207 animals were evaluated ante-mortem (age, height, breed-type, gender, body condition score [BCS]) and again immediately post-mortem (EQUIFAT scores, carcass weight). Multivariable, random effect linear regression models were fitted (breed as random effect; BCS as outcome variable). Only height, carcass weight, omental and retroperitoneal EQUIFAT scores remained as explanatory variables in the final model. The EQUIFAT scores developed here demonstrate clear functional differences between regional adipose depots and future studies could be directed towards describing associations between adiposity and disease risk in surgical and post-mortem situations.",
author = "PM Morrison and Patricia Harris and Charlotte Maltin and Dai Grove-White and CM Argo",
year = "2017",
month = "3",
day = "15",
doi = "10.1371/journal.pone.0173753",
language = "English",
volume = "12",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae. / Morrison, PM; Harris, Patricia; Maltin, Charlotte; Grove-White, Dai; Argo, CM.

In: PLoS ONE, Vol. 12, No. 3, e0173753, 15.03.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae

AU - Morrison, PM

AU - Harris, Patricia

AU - Maltin, Charlotte

AU - Grove-White, Dai

AU - Argo, CM

PY - 2017/3/15

Y1 - 2017/3/15

N2 - Anatomically distinct adipose tissues represent variable risks to metabolic health in man and some other mammals. Quantitative-imaging of internal adipose depots is problematic in large animals and associations between regional adiposity and health are poorly understood. This study aimed to develop and test a semi-quantitative system (EQUIFAT) which could be applied to regional adipose tissues. Anatomically-defined, photographic images of adipose depots (omental, mesenteric, epicardial, rump) were collected from 38 animals immediately post-mortem. Images were ranked and depot-specific descriptors were developed (1 = no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point scores. The repeatability and reliability of EQUIFAT was independently tested by 24 observers. When half scores were permitted, inter-observer agreement was substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate (average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and substantial agreement (epicardial and rump) between attempts. A further 207 animals were evaluated ante-mortem (age, height, breed-type, gender, body condition score [BCS]) and again immediately post-mortem (EQUIFAT scores, carcass weight). Multivariable, random effect linear regression models were fitted (breed as random effect; BCS as outcome variable). Only height, carcass weight, omental and retroperitoneal EQUIFAT scores remained as explanatory variables in the final model. The EQUIFAT scores developed here demonstrate clear functional differences between regional adipose depots and future studies could be directed towards describing associations between adiposity and disease risk in surgical and post-mortem situations.

AB - Anatomically distinct adipose tissues represent variable risks to metabolic health in man and some other mammals. Quantitative-imaging of internal adipose depots is problematic in large animals and associations between regional adiposity and health are poorly understood. This study aimed to develop and test a semi-quantitative system (EQUIFAT) which could be applied to regional adipose tissues. Anatomically-defined, photographic images of adipose depots (omental, mesenteric, epicardial, rump) were collected from 38 animals immediately post-mortem. Images were ranked and depot-specific descriptors were developed (1 = no fat visible; 5 = excessive fat present). Nuchal-crest and ventro-abdominal-retroperitoneal adipose depot depths (cm) were transformed to categorical 5 point scores. The repeatability and reliability of EQUIFAT was independently tested by 24 observers. When half scores were permitted, inter-observer agreement was substantial (average κw: mesenteric, 0.79; omental, 0.79; rump 0.61) or moderate (average κw; epicardial, 0.60). Intra-observer repeatability was tested by 8 observers on 2 occasions. Kappa analysis indicated perfect (omental and mesenteric) and substantial agreement (epicardial and rump) between attempts. A further 207 animals were evaluated ante-mortem (age, height, breed-type, gender, body condition score [BCS]) and again immediately post-mortem (EQUIFAT scores, carcass weight). Multivariable, random effect linear regression models were fitted (breed as random effect; BCS as outcome variable). Only height, carcass weight, omental and retroperitoneal EQUIFAT scores remained as explanatory variables in the final model. The EQUIFAT scores developed here demonstrate clear functional differences between regional adipose depots and future studies could be directed towards describing associations between adiposity and disease risk in surgical and post-mortem situations.

U2 - 10.1371/journal.pone.0173753

DO - 10.1371/journal.pone.0173753

M3 - Article

VL - 12

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 3

M1 - e0173753

ER -