Forage quality declines with rising temperatures, with implications for livestock production and methane emissions

Mark A Lee*, Aaron P Davis, Mizeck GG Chagunda, Pete Manning

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

83 Citations (Scopus)
150 Downloads (Pure)


Livestock numbers are increasing to supply the growing demand for meat-rich diets. The sustainability of this trend has been questioned, and future environmental changes, such as climate change, may cause some regions to become less suitable for livestock. Livestock and wild herbivores are strongly dependent on the nutritional chemistry of forage plants. Nutrition is positively linked to weight gains, milk production and reproductive success, and nutrition is also a key determinant of enteric methane production. In this meta-analysis, we assessed the effects of growing conditions on forage quality by compiling published measurements of grass nutritive value and combining these data with climatic, edaphic and management information. We found that forage nutritive value was reduced at higher temperatures and increased by nitrogen fertiliser addition, likely driven by a combination of changes to species identity and changes to physiology and phenology. These relationships were combined with multiple published empirical models to estimate forage- and temperature-driven changes to cattle enteric methane production. This suggested a previously undescribed positive climate change feedback, where elevated temperatures reduce grass nutritive value and correspondingly may increase methane production by 0.9ĝ€% with a 1ĝ€°C temperature rise and 4.5ĝ€% with a 5ĝ€°C rise (model average), thus creating an additional climate forcing effect. Future methane production increases are expected to be largest in parts of North America, central and eastern Europe and Asia, with the geographical extent of hotspots increasing under a high emissions scenario. These estimates require refinement and a greater knowledge of the abundance, size, feeding regime and location of cattle, and the representation of heat stress should be included in future modelling work. However, our results indicate that the cultivation of more nutritious forage plants and reduced livestock farming in warming regions may reduce this additional source of pastoral greenhouse gas emissions.

Original languageEnglish
Pages (from-to)1403-1417
Number of pages15
Issue number6
Early online date26 Mar 2017
Publication statusFirst published - 26 Mar 2017


Dive into the research topics of 'Forage quality declines with rising temperatures, with implications for livestock production and methane emissions'. Together they form a unique fingerprint.

Cite this