Genetic parameters of colostrum traits in Holstein dairy cows

Aikaterini Soufleri, G Banos, N Panousis, Dimitrios Fletouris, Geogios Arsenos, GE Valergakis,

Research output: Contribution to journalArticle

Abstract

The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm–measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7%, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.
Original languageEnglish
JournalJournal of Dairy Science
Early online date25 Sep 2019
DOIs
Publication statusFirst published - 25 Sep 2019

Fingerprint

colostrum
Holstein
dairy cows
calving
total solids
genetic correlation
phenotypic correlation
parity (reproduction)
energy content
cows
pedigree
lactose
milk yield
heritability
dry period (lactation)
farms
refractive index
proteins
lipids
brix

Keywords

  • Dairy cow
  • Colostrum quality
  • Genetic parameters

Cite this

Soufleri, Aikaterini ; Banos, G ; Panousis, N ; Fletouris, Dimitrios ; Arsenos, Geogios ; Valergakis, GE. / Genetic parameters of colostrum traits in Holstein dairy cows. In: Journal of Dairy Science. 2019.
@article{398b8fe68d3c43be88794f44048357cc,
title = "Genetic parameters of colostrum traits in Holstein dairy cows",
abstract = "The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm–measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7{\%}, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.",
keywords = "Dairy cow, Colostrum quality, Genetic parameters",
author = "Aikaterini Soufleri and G Banos and N Panousis and Dimitrios Fletouris and Geogios Arsenos and GE Valergakis,",
year = "2019",
month = "9",
day = "25",
doi = "10.3168/jds.2019-17054",
language = "English",
journal = "Journal of Dairy Science",

}

Genetic parameters of colostrum traits in Holstein dairy cows. / Soufleri, Aikaterini; Banos, G; Panousis, N; Fletouris, Dimitrios; Arsenos, Geogios; Valergakis, GE.

In: Journal of Dairy Science, 25.09.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Genetic parameters of colostrum traits in Holstein dairy cows

AU - Soufleri, Aikaterini

AU - Banos, G

AU - Panousis, N

AU - Fletouris, Dimitrios

AU - Arsenos, Geogios

AU - Valergakis,, GE

PY - 2019/9/25

Y1 - 2019/9/25

N2 - The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm–measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7%, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.

AB - The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm–measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7%, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.

KW - Dairy cow

KW - Colostrum quality

KW - Genetic parameters

U2 - 10.3168/jds.2019-17054

DO - 10.3168/jds.2019-17054

M3 - Article

JO - Journal of Dairy Science

JF - Journal of Dairy Science

ER -