Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures

Ashley B. Ward*, Patricia A. Harris, Caroline McG. Argo, Christine Watson, Madalina Neacsu, Wendy R. Russell, Antonio Ribeiro, Elaina Collie-Duguid, Zeynab Heidari, Philippa K. Morrison

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Downloads (Pure)

Abstract

The equine faecal microbiota is often assessed as a proxy of the microbial community in the distal colon, where the microbiome has been linked to states of health and disease in the horse. However, the microbial community structure may change over time if samples are not adequately preserved. This study stored equine faecal samples from n = 10 horses in four preservation treatments at room temperature for up to 150 h and assessed the resulting impact on microbial diversity and the differential abundance of taxa. Treatments included “COLD” (samples packaged with a cool pack), “CLX” (2% chlorhexidine digluconate solution), “NAP” (nucleic acid preservation buffer), and “FTA” (Whatman FTA™ cards). The samples were assessed using 16S rRNA gene sequencing after storage for 0, 24, 72, and 150 h at room temperature under the different treatments. The results showed effective preservation of diversity and community structure with NAP buffer but lower diversity (p = 0.001) and the under-representation of Fibrobacterota in the FTA card samples. The NAP treatment inhibited the overgrowth of bloom taxa that occurred by 72 h at room temperature. The COLD, CLX, and NAP treatments were effective in preserving the faecal microbiota for up to 24 h at room temperature, and the CLX and NAP treatments improved the yield of Patescibacteria and Fibrobacterota in some cases. The cold and CLX treatments were ineffective in preventing community shifts that occurred by 72 h at room temperature. These findings demonstrate the suitability of the COLD, NAP, and CLX treatments for the room temperature storage of equine faeces for up to 24 h and of NAP buffer for up to 150 h prior to processing.
Original languageEnglish
Article number3107
Number of pages1
JournalAnimals
Volume13
Issue number19
Early online date5 Oct 2023
DOIs
Publication statusFirst published - 5 Oct 2023

Keywords

  • General Veterinary
  • Animal Science and Zoology
  • microbiota
  • 16S rRNA
  • DNA preservation
  • gene survey
  • equine faeces
  • sample storage

Fingerprint

Dive into the research topics of 'Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures'. Together they form a unique fingerprint.

Cite this