Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras

S Gibson-Poole*, Sonia Humphris, Ian K Toth, A Hamilton

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

127 Downloads (Pure)

Abstract

This paper investigates the effectiveness of using a UAV with dual commercial off-the-shelf (COTS) cameras, one un-modified and one modified to sense near infra-red (NIR) wavelengths to identify the onset of disease within a trial crop of potatoes. The trial was composed of 2 plots of 16 drills containing 12 tubers exposed to the blackleg disease-causing bacterial pathogen (Pectobacterium atrosepticum) in order to demonstrate best practise tuber storage and haulm destruction methods. Eleven sets of aerial data were gathered between 27/5/2016~29/7/2016 and compared with ground truth data collected on 14/7/2016. Visual analysis of the data could only detect the onset of disease and not the specific infection and resulted in a user accuracy (UA) of 83% and producer accuracy (PA) of 78%, with a total accuracy (TA) of 91% and Kappa coefficient (K) of 0.75. The building blocks of an automated classification routine have been constructed using pixel and object based image analysis (OBIA) methods, which have shown promising first results (UA 65%, PA 73%, TA 87%, K 0.61) but requires further refinement to achieve an equivalent level of accuracy as that of the visual analysis.
Original languageEnglish
Pages (from-to)812-816
Number of pages8
JournalAdvances in Animal Biosciences
Volume8
Issue number2
Early online date1 Jun 2017
DOIs
Publication statusPrint publication - Jul 2017
EventECPA 2017 - 11th European Conference on Precision Agriculture - John McIntyre Centre, Edinburgh, United Kingdom
Duration: 16 Jul 201720 Jul 2017
https://ecpa.expom.io/

Bibliographical note

© The Animal Consortium 2017

Keywords

  • UAV
  • COTS
  • OBIA
  • Blackleg

Fingerprint

Dive into the research topics of 'Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras'. Together they form a unique fingerprint.

Cite this