Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway

SO Gülzari, B Vosough Ahmadi, AW Stott

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)
65 Downloads (Pure)

Abstract

Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000 cells/milliliter (mL) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01 kilogram (kg) and 0.95 kg carbon dioxide equivalents (CO2e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk quality was improved through reducing the level of SCC to 50,000 cells/mL in relation to SCC level 800,000 cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We suggest that further studies exploring the impact of a combination of diseases on emissions intensity in Norway are warranted.
Original languageEnglish
Pages (from-to)19 - 29
Number of pages11
JournalPreventive Veterinary Medicine
Volume150
Early online date27 Nov 2017
DOIs
Publication statusFirst published - 27 Nov 2017

Bibliographical note

1031423

Keywords

  • Dairy cow
  • Dynamic programming
  • Greenhouse gas emissions intensity
  • Profitability
  • Subclinical mastitis
  • Whole farm modelling

Fingerprint

Dive into the research topics of 'Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway'. Together they form a unique fingerprint.

Cite this