Influence of sodium fumarate addition on rumen fermentation in vitro

S López, C Valdés, C J Newbold, R J Wallace

Research output: Contribution to journalArticle

103 Citations (Scopus)

Abstract

The influence of sodium fumarate on rumen fermentation was investigated in vitro using batch and semi-continuous cultures of mixed rumen micro-organisms taken from three sheep receiving a basal diet of hay, barley, molasses, fish meal and a mineral-vitamin supplement (500, 299.5, 100, 91 and 9.5 g/kg DM respectively). Batch cultures consisted of 10 ml strained rumen fluid in 40 ml anaerobic buffer containing 200 mg of the same feed given to the sheep. Sodium fumarate was added to achieve a final concentration of 0, 5 or 10 mmol/l, as a result of the addition of 0, 250 or 500 mumol, equivalent to 0, 200 and 400 g/kg feed. CH4 production at 24 h (360 mumol in the control cultures) fell (P < 0.05) by 18 and 22 mumol respectively (SED 7.5). Total gas production was increased by the addition of fumarate without significant accumulation of H2. Substantial increases in acetate production (92 and 194 mumol; SED 26.7, P < 0.01) were accompanied by increases in propionate formation (212 and 396 mumol; SED 13.0, P < 0.001). Longer-term effects of fumarate supplementation on ruminal fermentation and CH4 production were investigated using the rumen simulation technique (Rusitec). Eight vessels were given 20 g basal diet/d, and half of them received a supplement of fumarate (disodium salt) over a period of 19 d. The response to the daily addition of 6.25 mmol sodium fumarate was a decrease in CH4 production of 1.2 mmol (SED 0.39, P < 0.05), equivalent to the consumption of 4.8 mmol H2, and an increase in propionate production of 4.9 mmol (from 10.4 to 15.3 (SED 1.05) mmol/d, P < 0.01). The inhibition of CH4 production did not decline during the period of time that fumarate was added to the vessels. Thus, the decrease in CH4 corresponded well to the fraction of the fumarate that was converted to propionate. Fumarate had no significant (P > 0.05) effect on total bacterial numbers or on the number of methanogenic archaea, but numbers of cellulolytic bacteria were increased (8.8 v. 23.9 (SED 2.49) x 10(5) per ml, P < 0.01). Fumarate also increased DM digestibility of the basal diet after 48 h incubation (0.476 v. 0.508 (SED 0.0123), P < 0.05). Thus, it was concluded that sodium fumarate may be a useful dietary additive for ruminants, because it diverts some H2 from CH4 production and because it is able to stimulate proliferation of cellulolytic bacteria and digestion of fibre.

Original languageEnglish
Pages (from-to)59-64
Number of pages6
JournalBritish Journal of Nutrition
Volume81
Issue number1
Publication statusPrint publication - Jan 1999
Externally publishedYes

Keywords

  • Acetates/metabolism
  • Animals
  • Bacteria/metabolism
  • Dietary Fiber/metabolism
  • Fermentation
  • Fumarates/administration & dosage
  • Methane/metabolism
  • Microbiological Techniques
  • Propionates/metabolism
  • Rumen/metabolism
  • Sheep

Fingerprint Dive into the research topics of 'Influence of sodium fumarate addition on rumen fermentation in vitro'. Together they form a unique fingerprint.

  • Cite this