TY - JOUR
T1 - Modeling genetic components of hatch of fertile in broiler breeders
AU - Makanjuola, Bayode O.
AU - Olori, Victor E.
AU - Mrode, Raphael A.
PY - 2021/5
Y1 - 2021/5
N2 - Reproductive efficiency such as fertility and hatch of fertile (HoF) are of economic importance and concern to breeding companies becaue of their effects on chick output. Similar to other traits of economic importance in poultry breeding, the rate of response for HoF is largely dependent on the use of an appropriate model for evaluating the trait. Therefore, the objectives of this study were to estimate genetic parameters from cumulative, repeatability, fixed regression, random regression, and multitrait models for HoF from a pure-line broiler breeder. The data available for this study consisted of weekly HoF records from 11,729 hens with a total pedigree record of 38,260. Estimates of heritability from the various models ranged from 0.04 to 0.22 with the highest estimate obtained from the cumulative model and the lowest from the repeatability model. Responses to selection estimated for the different models ranged from 0.03 to 0.08% gain per year of the phenotypic mean. In general, the cumulative and the repeatability models underestimated response to selection. The multitrait and random regression models gave similar results for response to selection at 0.08 percentage change in phenotypic mean. In conclusion, the cumulative model is not optimal for modeling HoF, and likewise, the repeatability model. The random regression and multitrait models should be considered instead as they offered a higher response to selection. However, if a multitrait analysis is to be considered, it is recommended to split up the production period in such a way as to avoid computational constraints due to overparameterization.
AB - Reproductive efficiency such as fertility and hatch of fertile (HoF) are of economic importance and concern to breeding companies becaue of their effects on chick output. Similar to other traits of economic importance in poultry breeding, the rate of response for HoF is largely dependent on the use of an appropriate model for evaluating the trait. Therefore, the objectives of this study were to estimate genetic parameters from cumulative, repeatability, fixed regression, random regression, and multitrait models for HoF from a pure-line broiler breeder. The data available for this study consisted of weekly HoF records from 11,729 hens with a total pedigree record of 38,260. Estimates of heritability from the various models ranged from 0.04 to 0.22 with the highest estimate obtained from the cumulative model and the lowest from the repeatability model. Responses to selection estimated for the different models ranged from 0.03 to 0.08% gain per year of the phenotypic mean. In general, the cumulative and the repeatability models underestimated response to selection. The multitrait and random regression models gave similar results for response to selection at 0.08 percentage change in phenotypic mean. In conclusion, the cumulative model is not optimal for modeling HoF, and likewise, the repeatability model. The random regression and multitrait models should be considered instead as they offered a higher response to selection. However, if a multitrait analysis is to be considered, it is recommended to split up the production period in such a way as to avoid computational constraints due to overparameterization.
KW - broiler breeder
KW - hatch of fertile
KW - modeling
KW - random regression
UR - http://www.scopus.com/inward/record.url?scp=85103014373&partnerID=8YFLogxK
U2 - 10.1016/j.psj.2021.101062
DO - 10.1016/j.psj.2021.101062
M3 - Article
C2 - 33765488
AN - SCOPUS:85103014373
SN - 0032-5791
VL - 100
JO - Poultry Science
JF - Poultry Science
IS - 5
M1 - 101062
ER -