TY - JOUR
T1 - Novel low-cost hybrid composites from asphaltene/SBS tri-block copolymer with improved thermal and mechanical properties
AU - Wu, Hongchao
AU - Thakur, Vijay Kumar
AU - Kessler, Michael R.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - A continuous demanding in raw chemicals cost reduction and processing simplification facilitates the exploration and development of new materials in current plastics industries. In this study, a novel carbonaceous filler material “asphaltene” extracted from inexpensive and abundant asphalt is blended into a thermoplastic elastomer poly(styrene–butadiene–styrene) copolymer (SBS) for the fabrication of hybrid composites at different loadings via melt-compounding. Due to its intrinsic molecular rigidness and desirable compatibility with SBS, the prepared asphaltene/SBS composites displays excellent thermo-mechanical properties by improving the storage modulus in the glassy region by 19 % and in the rubbery region by 305 %, as well as increasing the thermal stability by up to 20 °C. The overall mechanical properties are also enhanced substantially by incorporation of asphaltene into the SBS matrix according to the filler loading in SBS: the tensile strength increased by 2.2 MPa, the maximum elongation by 268 %, Young’s modulus by 214 %, and toughness by 100.4 %. Although the introduced asphaltene inevitably led to a gradual increment in the viscosity of polymer melts from the filler–filler and filler–polymer interactions, homogeneous dispersion of the reinforcing fillers at optimum loading (20–30 wt%) in SBS matrix is still sustained.
AB - A continuous demanding in raw chemicals cost reduction and processing simplification facilitates the exploration and development of new materials in current plastics industries. In this study, a novel carbonaceous filler material “asphaltene” extracted from inexpensive and abundant asphalt is blended into a thermoplastic elastomer poly(styrene–butadiene–styrene) copolymer (SBS) for the fabrication of hybrid composites at different loadings via melt-compounding. Due to its intrinsic molecular rigidness and desirable compatibility with SBS, the prepared asphaltene/SBS composites displays excellent thermo-mechanical properties by improving the storage modulus in the glassy region by 19 % and in the rubbery region by 305 %, as well as increasing the thermal stability by up to 20 °C. The overall mechanical properties are also enhanced substantially by incorporation of asphaltene into the SBS matrix according to the filler loading in SBS: the tensile strength increased by 2.2 MPa, the maximum elongation by 268 %, Young’s modulus by 214 %, and toughness by 100.4 %. Although the introduced asphaltene inevitably led to a gradual increment in the viscosity of polymer melts from the filler–filler and filler–polymer interactions, homogeneous dispersion of the reinforcing fillers at optimum loading (20–30 wt%) in SBS matrix is still sustained.
UR - http://www.scopus.com/inward/record.url?scp=84953362910&partnerID=8YFLogxK
U2 - 10.1007/s10853-015-9548-1
DO - 10.1007/s10853-015-9548-1
M3 - Article
AN - SCOPUS:84953362910
SN - 0022-2461
VL - 51
SP - 2394
EP - 2403
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 5
ER -