Persistency of methane mitigation by dietary nitrate supplementation in dairy cows

S. M. Van Zijderveld*, W. J.J. Gerrits, J. Dijkstra, J. R. Newbold, R. B.A. Hulshof, H. B. Perdok

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

197 Citations (Scopus)


Feeding nitrate to dairy cows may lower ruminal methane production by competing for reducing equivalents with methanogenesis. Twenty lactating Holstein-Friesian dairy cows (33.2. ±. 6.0. kg of milk/d; 104. ±. 58 d in milk at the start of the experiment) were fed a total mixed ration (corn silage-based; forage to concentrate ratio 66:34), containing either a dietary urea or a dietary nitrate source [21 g of nitrate/kg of dry matter (DM)] during 4 successive 24-d periods, to assess the methane-mitigating potential of dietary nitrate and its persistency. The study was conducted as paired comparisons in a randomized design with repeated measurements. Cows were blocked by parity, lactation stage, and milk production at the start of the experiment. A 4-wk adaptation period allowed the rumen microbes to adapt to dietary urea and nitrate. Diets were isoenergetic and isonitrogenous. Methane production, energy balance, and diet digestibility were measured in open-circuit indirect calorimetry chambers. Cows were limit-fed during measurements. Nitrate persistently decreased methane production by 16%, whether expressed in grams per day, grams per kilogram of dry matter intake (DMI), or as percentage of gross energy intake, which was sustained for the full experimental period (mean 368 vs. 310. ±. 12.5. g/d; 19.4 vs. 16.2. ±. 0.47 g/kg of DMI; 5.9 vs.4.9. ±. 0.15% of gross energy intake for urea vs. nitrate, respectively). This decrease was smaller than the stoichiometrical methane mitigation potential of nitrate (full potential = 28% methane reduction). The decreased energy loss from methane resulted in an improved conversion of dietary energy intake into metabolizable energy (57.3 vs. 58.6. ±. 0.70%, urea vs. nitrate, respectively). Despite this, milk energy output or energy retention was not affected by dietary nitrate. Nitrate did not affect milk yield or apparent digestibility of crude fat, neutral detergent fiber, and starch. Milk protein content (3.21 vs. 3.05. ±. 0.058%, urea vs. nitrate respectively) but not protein yield was lower for dietary nitrate. Hydrogen production between morning and afternoon milking was measured during the last experimental period. Cows fed nitrate emitted more hydrogen. Cows fed nitrate displayed higher blood methemoglobin levels (0.5 vs. 4.0. ±. 1.07% of hemoglobin, urea vs. nitrate respectively) and lower hemoglobin levels (7.1 vs. 6.3. ±. 0.11 mmol/L, urea vs. nitrate respectively). Dietary nitrate persistently decreased methane production from lactating dairy cows fed restricted amounts of feed, but the reduction in energy losses did not improve milk production or energy balance.

Original languageEnglish
Pages (from-to)4028-4038
Number of pages11
JournalJournal of Dairy Science
Issue number8
Publication statusPrint publication - 1 Aug 2011
Externally publishedYes

Bibliographical note

Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


  • Dairy cow
  • Methane
  • Nitrate


Dive into the research topics of 'Persistency of methane mitigation by dietary nitrate supplementation in dairy cows'. Together they form a unique fingerprint.

Cite this