TY - JOUR
T1 - Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database
AU - van Lingen, Henk
AU - Niu, Mutian
AU - Kebreab, Ermias
AU - Valadares Filho, Sebastião
AU - Rooke, JA
AU - Duthie, C-A
AU - Schwarm, Angela
AU - Kreuzer, Michael
AU - Hynd, Phil
AU - Caetano, Mariana
AU - Eugène, Maguy
AU - Martin, Cécile
AU - McGee, Mark
AU - O'Kiely, Padraig
AU - Hünerberg, Martin
AU - McAllister, Tim
AU - Berchielli, Telma
AU - Messana, Juliana
AU - Peiren, Nico
AU - Chaves, Alex
AU - Charmley, Ed
AU - Cole, Andy
AU - Hales, Kristin
AU - Lee, Sang-Suk
AU - Berndt, Alexandre
AU - Reynolds, Christopher
AU - Crompton, Les
AU - Bayat, Ali-Reza
AU - Yáñez-Ruiz, David
AU - Yu, Zhongtang
AU - Bannink, André
AU - Dijkstra, Jan
AU - Casper, David
AU - Hristov, Alexander
PY - 2019/11/1
Y1 - 2019/11/1
N2 - Enteric methane (CH4) production attributable to beef cattle contributes to global greenhouse gas emissions. Reliably estimating this contribution requires extensive CH4 emission data from beef cattle under different management conditions worldwide. The objectives were to: 1) predict CH4 production (g d¬-1 animal-1), yield [g (kg dry matter intake; DMI)-1] and intensity [g (kg average daily gain)-1] using an intercontinental database (data from Europe, North America, Brazil, Australia and South Korea); 2) assess the impact of geographic region, and of higher- and lower-forage diets. Linear models were developed by incrementally adding covariates. A K-fold cross-validation indicated that a CH4 production equation using only DMI that was fitted to all available data had a root mean square prediction error (RMSPE; % of observed mean) of 31.2%. Subsets containing data with ≥ 25% and ≤ 18% dietary forage contents had an RMSPE of 30.8 and 34.2%, with the all-data CH4 production equation, whereas these errors decreased to 29.3 and 28.4%, respectively, when using CH4 prediction equations fitted to these subsets. The RMSPE of the ≥ 25% forage subset further decreased to 24.7% when using multiple regression. Europe- and North America-specific subsets predicted by the best performing ≥ 25% forage multiple regression equation had RMSPE of 24.5 and 20.4%, whereas these errors were 24.5 and 20.0% with region-specific equations, respectively. The developed equations had less RMSPE than extant equations evaluated for all data (22.5 vs. 23.2%), for higher-forage (21.2 vs. 23.1%), but not for the lower-forage subsets (28.4 vs. 27.9%). Splitting the dataset by forage content did not improve CH4 yield or intensity predictions. Predicting beef cattle CH4 production using energy conversion factors, as applied by the Intergovernmental Panel on Climate Change, indicated that adequate forage content-based and region-specific energy conversion factors improve prediction accuracy and are preferred in national or global inventories.
AB - Enteric methane (CH4) production attributable to beef cattle contributes to global greenhouse gas emissions. Reliably estimating this contribution requires extensive CH4 emission data from beef cattle under different management conditions worldwide. The objectives were to: 1) predict CH4 production (g d¬-1 animal-1), yield [g (kg dry matter intake; DMI)-1] and intensity [g (kg average daily gain)-1] using an intercontinental database (data from Europe, North America, Brazil, Australia and South Korea); 2) assess the impact of geographic region, and of higher- and lower-forage diets. Linear models were developed by incrementally adding covariates. A K-fold cross-validation indicated that a CH4 production equation using only DMI that was fitted to all available data had a root mean square prediction error (RMSPE; % of observed mean) of 31.2%. Subsets containing data with ≥ 25% and ≤ 18% dietary forage contents had an RMSPE of 30.8 and 34.2%, with the all-data CH4 production equation, whereas these errors decreased to 29.3 and 28.4%, respectively, when using CH4 prediction equations fitted to these subsets. The RMSPE of the ≥ 25% forage subset further decreased to 24.7% when using multiple regression. Europe- and North America-specific subsets predicted by the best performing ≥ 25% forage multiple regression equation had RMSPE of 24.5 and 20.4%, whereas these errors were 24.5 and 20.0% with region-specific equations, respectively. The developed equations had less RMSPE than extant equations evaluated for all data (22.5 vs. 23.2%), for higher-forage (21.2 vs. 23.1%), but not for the lower-forage subsets (28.4 vs. 27.9%). Splitting the dataset by forage content did not improve CH4 yield or intensity predictions. Predicting beef cattle CH4 production using energy conversion factors, as applied by the Intergovernmental Panel on Climate Change, indicated that adequate forage content-based and region-specific energy conversion factors improve prediction accuracy and are preferred in national or global inventories.
KW - Empirical modeling
KW - Geographical region
KW - Forage content
KW - Dietary variables
KW - Methane emission
U2 - 10.1016/j.agee.2019.106575
DO - 10.1016/j.agee.2019.106575
M3 - Article
SN - 0167-8809
VL - 283
JO - Agriculture, Ecosystems and Environment
JF - Agriculture, Ecosystems and Environment
M1 - 106575
ER -