Probabilistic forecasts: scoring rules and their decomposition and diagrammatic representation via Bregman divergences

G Hughes, CFE Topp

Research output: Contribution to journalArticle

2 Citations (Scopus)
5 Downloads (Pure)


A scoring rule is a device for evaluation of forecasts that are given in terms of the probability of an event. In this article we will restrict our attention to binary forecasts. We may think of a scoring rule as a penalty attached to a forecast after the event has been observed. Thus a relatively small penalty will accrue if a high probability forecast that an event will occur is followed by occurrence of the event. On the other hand, a relatively large penalty will accrue if this forecast is followed by non-occurrence of the event. Meteorologists have been foremost in developing scoring rules for the evaluation of probabilistic forecasts. Here we use a published meteorological data set to illustrate diagrammatically the Brier score and the divergence score, and their statistical decompositions, as examples of Bregman divergences. In writing this article, we have in mind environmental scientists and modellers for whom meteorological factors are important drivers of biological, physical and chemical processes of interest. In this context, we briefly draw attention to the potential for probabilistic forecasting of the within-season component of nitrous oxide emissions from agricultural soils.
Original languageEnglish
Pages (from-to)5450 - 5471
Number of pages22
Issue number8
Publication statusFirst published - 2015

Bibliographical note



  • Binary forecast
  • Bregman divergence score
  • Brier score
  • N2O emissions models
  • Scoring rule

Fingerprint Dive into the research topics of 'Probabilistic forecasts: scoring rules and their decomposition and diagrammatic representation via Bregman divergences'. Together they form a unique fingerprint.

  • Profiles

    No photo of Kairsty Topp

    Kairsty Topp

    Person: Academic contract that is research only

    Cite this