Abstract
Aims
Organic acid exudation by plant roots is thought to promote phosphate (P) solubilisation and bioavailability in soils with poorly available nutrients. Here we describe a new combined experimental (microdialysis) and modelling approach to quantify citrate-enhanced P desorption and its importance for root P uptake.
Methods
To mimic the rhizosphere, microdialysis probes were placed in soil and perfused with citrate solutions (0.1, 1.0 and 10 mM) and the amount of P recovered from soil used to quantify rhizosphere P availability. Parameters in a mathematical model describing probe P uptake, citrate exudation, P movement and citrate-enhanced desorption were fit to the experimental data. These parameters were used in a model of a root which exuded citrate and absorbed P. The importance of soil citrate-P mobilisation for root P uptake was then quantified using this model.
Results
A plant needs to exude citrate at a rate of 0.73 μmol cm−1 of root h−1 to see a significant increase in P absorption. Microdialysis probes with citrate in the perfusate were shown to absorb similar quantities of P to an exuding root.
Conclusion
A single root exuding citrate at a typical rate (4.3 × 10−5 μmol m−1 of root h−1) did not contribute significantly to P uptake. Microdialysis probes show promise for measuring rhizosphere processes when calibration experiments and mathematical modelling are used to decouple microdialysis and rhizosphere mechanisms.
Organic acid exudation by plant roots is thought to promote phosphate (P) solubilisation and bioavailability in soils with poorly available nutrients. Here we describe a new combined experimental (microdialysis) and modelling approach to quantify citrate-enhanced P desorption and its importance for root P uptake.
Methods
To mimic the rhizosphere, microdialysis probes were placed in soil and perfused with citrate solutions (0.1, 1.0 and 10 mM) and the amount of P recovered from soil used to quantify rhizosphere P availability. Parameters in a mathematical model describing probe P uptake, citrate exudation, P movement and citrate-enhanced desorption were fit to the experimental data. These parameters were used in a model of a root which exuded citrate and absorbed P. The importance of soil citrate-P mobilisation for root P uptake was then quantified using this model.
Results
A plant needs to exude citrate at a rate of 0.73 μmol cm−1 of root h−1 to see a significant increase in P absorption. Microdialysis probes with citrate in the perfusate were shown to absorb similar quantities of P to an exuding root.
Conclusion
A single root exuding citrate at a typical rate (4.3 × 10−5 μmol m−1 of root h−1) did not contribute significantly to P uptake. Microdialysis probes show promise for measuring rhizosphere processes when calibration experiments and mathematical modelling are used to decouple microdialysis and rhizosphere mechanisms.
Original language | English |
---|---|
Pages (from-to) | 69-89 |
Journal | Plant and Soil |
Volume | 461 |
DOIs | |
Publication status | Print publication - 5 Dec 2019 |
Externally published | Yes |