Abstract
This study aimed to assess the merit and suitability of individual functional units (FU) in expressing greenhouse gas emissions intensity in different dairy production systems. An FU provides a clearly defined and measurable reference to which input and output data are normalised. This enables the results from life-cycle assessment (LCA) of different systems to be treated as functionally equivalent. Although the methodological framework of LCA has been standardised, selection of an appropriate FU remains ultimately at the discretion of the individual study. The aim of the present analysis was to examine the effect of different FU on the emissions intensities of different dairy production systems. Analysis was based on 7 years of data (2004 to 2010) from four Holstein-Friesian dairy systems at Scotland’s Rural College’s long-term genetic and management systems project, the Langhill herd. Implementation of LCA accounted for the environmental impacts of the whole-farm systems and their production of milk from ‘cradle to farm gate’. Emissions intensity was determined as kilograms of carbon dioxide equivalents referenced to six FU: UK livestock units, energy-corrected milk yield, total combined milk solids yield, on-farm land used for production, total combined on- and off-farm land used for production, and the proposed new FU–energy-corrected milk yield per hectare of total land used. Energy-corrected milk was the FU most effective for reflecting differences between the systems. Functional unit that incorporated a land-related aspect did not find difference between systems which were managed under the same forage regime, despite their comprising different genetic lines. Employing on-farm land as the FU favoured grazing systems. The proposed dual FU combining both productivity and land use did not differentiate between emissions intensity of systems as effectively as the productivity-based units. However, this dual unit displayed potential to quantify in a simple way the positive or negative outcome of trade-offs between land and production efficiencies, in which improvement in emissions intensity using one FU may be accompanied by deterioration using another FU. The perceived environmental efficiencies of different dairy production systems in terms of their emissions intensities were susceptible to change based upon the FU employed, and hence the FU used in any study needs to be taken into account in the interpretation of results.
Original language | English |
---|---|
Pages (from-to) | 1381 - 1388 |
Number of pages | 8 |
Journal | Animal |
Volume | 11 |
Issue number | 8 |
Early online date | 10 Feb 2017 |
DOIs | |
Publication status | First published - 10 Feb 2017 |
Bibliographical note
1030828Keywords
- Dairy cow
- Functional unit
- Greenhouse gas
- Life Cycle Assessment