TY - JOUR
T1 - Role of microbial communities in conferring resistance and resilience of soil carbon and nitrogen cycling following contrasting stresses
AU - Shu, Xin
AU - Daniell, Tim J.
AU - Hallett, Paul D.
AU - Baggs, Elizabeth M.
AU - Mitchell, Susan
AU - Langarica-Fuentes, Adrian
AU - Griffiths, Bryan S.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - Soils frequently experience environmental stresses that may have transient or persistent impact on important ecosystem services, such as carbon (C) and nitrogen (N) cycling. Microbial communities underpin resistance (the ability to withstand a stress) and resilience (the ability to recover from a stress) of these functions. Whilst functional stability and resilience have been studied extensively, the link to genetic stability is missing. In this study, the resistance and resilience of C mineralization, ammonia oxidation and denitrification, their associated gene abundances (16S rRNA, bacterial amoA, nirK, nirS, nosZ-I and nosZ-II) and bacterial community structures (T-RFLP 16S rRNA) were compared in two managed soils for 28 days after stressing the soils with either a persistent (1 mg Cu soil g−1) or a transient (heat at 40 °C for 16 h) stress. The average resistance of C mineralization to Cu was 60%, which was significantly greater than the resistance of ammonia oxidation (25%) and denitrification (31%) to Cu. Similarly, the average resilience of C mineralization to Cu was 52%, which was significantly greater than the resilience of ammonia oxidation (12%) and denitrification (18%) to Cu. However, this pattern was not significant after heat stress, indicating the critical role of different stressors. Changes in total bacterial community structure rather than abundance of 16S rRNA reflected the responses of C mineralization to Cu and heat. Both Cu and heat significantly decreased functional gene abundance (amoA, nirK, nirS, nosZ-I and nosZ-II), however, a significant recovery of denitrifying gene abundance was observed after 28 days following heat. There were lack of constant relationships between functional and genetic stability, highlighting that soil physiochemical properties, the nature of the stressor, and microbial life history traits combine to confer functional resistance and resilience. Genetic responses on their own are therefore inadequate in predicating changes to soil functions following stresses.
AB - Soils frequently experience environmental stresses that may have transient or persistent impact on important ecosystem services, such as carbon (C) and nitrogen (N) cycling. Microbial communities underpin resistance (the ability to withstand a stress) and resilience (the ability to recover from a stress) of these functions. Whilst functional stability and resilience have been studied extensively, the link to genetic stability is missing. In this study, the resistance and resilience of C mineralization, ammonia oxidation and denitrification, their associated gene abundances (16S rRNA, bacterial amoA, nirK, nirS, nosZ-I and nosZ-II) and bacterial community structures (T-RFLP 16S rRNA) were compared in two managed soils for 28 days after stressing the soils with either a persistent (1 mg Cu soil g−1) or a transient (heat at 40 °C for 16 h) stress. The average resistance of C mineralization to Cu was 60%, which was significantly greater than the resistance of ammonia oxidation (25%) and denitrification (31%) to Cu. Similarly, the average resilience of C mineralization to Cu was 52%, which was significantly greater than the resilience of ammonia oxidation (12%) and denitrification (18%) to Cu. However, this pattern was not significant after heat stress, indicating the critical role of different stressors. Changes in total bacterial community structure rather than abundance of 16S rRNA reflected the responses of C mineralization to Cu and heat. Both Cu and heat significantly decreased functional gene abundance (amoA, nirK, nirS, nosZ-I and nosZ-II), however, a significant recovery of denitrifying gene abundance was observed after 28 days following heat. There were lack of constant relationships between functional and genetic stability, highlighting that soil physiochemical properties, the nature of the stressor, and microbial life history traits combine to confer functional resistance and resilience. Genetic responses on their own are therefore inadequate in predicating changes to soil functions following stresses.
KW - Ammonia oxidation
KW - Denitrification
KW - Microbial community
KW - Mineralization
KW - Stresses
KW - Sustainability
UR - http://www.scopus.com/inward/record.url?scp=85102608804&partnerID=8YFLogxK
U2 - 10.1016/j.ejsobi.2021.103308
DO - 10.1016/j.ejsobi.2021.103308
M3 - Article
AN - SCOPUS:85102608804
SN - 1164-5563
VL - 104
JO - European Journal of Soil Biology
JF - European Journal of Soil Biology
M1 - 103308
ER -