TY - JOUR
T1 - Sustainable Foams from Hemp, Lignin, Xylan, Pectin, and Glycerol: Tunable via Reversible Citric Acid Crosslinking for Absorption and Insulation Applications
AU - Beluns, Sergejs
AU - Platnieks, Oskars
AU - Jurinovs, Maksims
AU - Buss, Rinalds
AU - Gaidukovs, Sergejs
AU - Orlova, Liga
AU - Starkova, Olesja
AU - Thakur, Vijay Kumar
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/8
Y1 - 2024/8
N2 - This study investigates the development of sustainable multifunctional foams utilizing hemp stalk waste, lignin, xylan, pectin, glycerol, and citric acid. Using the freeze-drying method for foam formation in combination with industrial waste products and renewable resources, we emphasize a green, scalable material development approach. In total, 25 distinct formulations were prepared and methodically examined, mainly focusing on the roles of citric acid, pectin, and glycerol. Thermal crosslinking, conducted at 140°C, was analyzed using FTIR, confirming the formation of ester bonds. The microstructural characterization of the foams revealed distinct variations from nanofibrillar to microfibrillar structures based on composition. The bulk density of the foams ranged from 13 to 152 mg/cm3, and porosity values varied from 97% to 99% for most of the compositions. Foams showed up to 50 g/g water, 51 g/g rapeseed oil, and 46 g/g kerosine absorption. Foam absorption capacity changes were examined through 10 iterative cycles in water, demonstrating that most compositions retained near-original absorption capacities. Adding glycerol conferred exceptional hydrophobic properties to the foam surfaces, as evidenced by water contact angles ranging between 140° and 150°. The thermal conductivity of foams ranged from 0.040 to 0.046 W/mK. The mechanical properties of foams were assessed using compression testing, which showed highly tunable structures ranging from soft to rigid. This study illustrates the broad applicability of these foams, emphasizing their utility in thermal insulation, filtration systems, and environmental cleanup, among other potential uses.
AB - This study investigates the development of sustainable multifunctional foams utilizing hemp stalk waste, lignin, xylan, pectin, glycerol, and citric acid. Using the freeze-drying method for foam formation in combination with industrial waste products and renewable resources, we emphasize a green, scalable material development approach. In total, 25 distinct formulations were prepared and methodically examined, mainly focusing on the roles of citric acid, pectin, and glycerol. Thermal crosslinking, conducted at 140°C, was analyzed using FTIR, confirming the formation of ester bonds. The microstructural characterization of the foams revealed distinct variations from nanofibrillar to microfibrillar structures based on composition. The bulk density of the foams ranged from 13 to 152 mg/cm3, and porosity values varied from 97% to 99% for most of the compositions. Foams showed up to 50 g/g water, 51 g/g rapeseed oil, and 46 g/g kerosine absorption. Foam absorption capacity changes were examined through 10 iterative cycles in water, demonstrating that most compositions retained near-original absorption capacities. Adding glycerol conferred exceptional hydrophobic properties to the foam surfaces, as evidenced by water contact angles ranging between 140° and 150°. The thermal conductivity of foams ranged from 0.040 to 0.046 W/mK. The mechanical properties of foams were assessed using compression testing, which showed highly tunable structures ranging from soft to rigid. This study illustrates the broad applicability of these foams, emphasizing their utility in thermal insulation, filtration systems, and environmental cleanup, among other potential uses.
KW - Biopolymers
KW - Cellulose
KW - Circular economy
KW - Reassembly
KW - Wood mimic
UR - http://www.scopus.com/inward/record.url?scp=85195211610&partnerID=8YFLogxK
U2 - 10.1016/j.giant.2024.100295
DO - 10.1016/j.giant.2024.100295
M3 - Article
SN - 2666-5425
VL - 19
JO - Giant
JF - Giant
M1 - 100295
ER -