Abstract
The innovation of drug delivery vehicles with controlled properties for cancer therapy is the aim of most pharmaceutical research. This study aims to fabricate a new type of smart biocompatible stealth-nanoliposome to deliver curcumin for cancer treatment. Herein, four different types of liposomes (with/without pH-responsive polymeric coating) were synthesized via the Mozafari method and then characterized with several tests, including dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Zeta potential, and field emission scanning electron microscopes (FE-S EM). The loading and release profile of curcumin were evaluated in two pH of 7.4 and 6.6. Finally, the MTT assay was used to assess the cytotoxicity of the samples. FE-SEM results revealed a mean size of about 40 and 50 nm for smart stealth-liposome and liposome, respectively. The results of drug entrapment revealed that non-coated liposome had about 74% entrapment efficiency, while it was about 84% for PEGylated liposomes. Furthermore, the drug released pattern of the nanocarriers showed more controllable release in stealth-liposome in comparison to non-coated one. The results of the cytotoxicity test demonstrated the toxicity of drug-loaded carriers on cancer cells. Based on the results of this study, the as-prepared smart stealth pH-responsive nanoliposome could be considered as a potential candidate for cancer therapy.
Original language | English |
---|---|
Article number | 19 |
Journal | Fibers |
Volume | 9 |
Issue number | 3 |
Early online date | 8 Mar 2021 |
DOIs | |
Publication status | First published - 8 Mar 2021 |
Keywords
- Herbal drug
- Liposome
- Mozafari method
- Smart drug delivery