The impact of divergent breed types and diets on methane emissions, rumen characteristics and performance of finishing beef cattle

C-A Duthie, MJ Haskell, JJ Hyslop, A Waterhouse, RJ Wallace, R Roehe, JA Rooke

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)
77 Downloads (Pure)


This study was undertaken to further develop our understanding of the links between breed, diet and the rumen microbial community and determine their effect on production characteristics and methane (CH4) emissions from beef cattle. The experiment was of a 2×2 factorial design, comprising two breeds (crossbred Charolais (CHX); purebred Luing (LU)) and two diets (concentrate-straw or silage-based). In total, 80 steers were used and balanced for sire within each breed, farm of origin and BW across diets. The diets (fed as total mixed rations) consisted of (g/kg dry matter (DM)) forage to concentrate ratios of either 500 : 500 (Mixed) or 79 : 921 (Concentrate). Steers were adapted to the diets over a 4-week period and performance and feed efficiency were then measured over a 56-day test period. Directly after the 56-day test, CH4 and carbon dioxide (CO2) emissions were measured (six steers/week) over a 13-week period. Compared with LU steers, CHX steers had greater average daily gain (ADG; P<0.05) and significantly (P<0.001) lower residual feed intake. Crossbred Charolais steers had superior conformation and fatness scores (P<0.001) than LU steers. Although steers consumed, on a DM basis, more Concentrate than Mixed diet (P<0.01), there were no differences between diets in either ADG or feed efficiency during the 56-day test. At slaughter, however, Concentrate-fed steers were heavier (P<0.05) and had greater carcass weights than Mixed-fed steers (P<0.001). Breed of steer did not influence CH4 production, but it was substantially lower when the Concentrate rather than Mixed diet was fed (P<0.001). Rumen fluid from Concentrate-fed steers contained greater proportions of propionic acid (P<0.001) and lower proportions of acetic acid (P<0.001), fewer archaea (P<0.01) and protozoa (P=0.09), but more Clostridium Cluster XIVa (P<0.01) and Bacteroides plus Prevotella (P<0.001) than Mixed-fed steers. When the CH4 to CO2 molar ratio was considered as a proxy method for CH4 production (g/kg DM intake), only weak relationships were found within diets. In conclusion, although feeding Concentrate and Mixed diets produced substantial differences in CH4 emissions and rumen characteristics, differences in performance were influenced more markedly by breed.
Original languageEnglish
Pages (from-to)1762 - 1771
Number of pages10
Issue number10
Early online date22 Feb 2017
Publication statusFirst published - 22 Feb 2017

Bibliographical note



  • Beef cattle
  • Concentrate
  • Forage
  • Methane
  • Performance


Dive into the research topics of 'The impact of divergent breed types and diets on methane emissions, rumen characteristics and performance of finishing beef cattle'. Together they form a unique fingerprint.

Cite this