Trade-offs between indicators of performance and sustainability in breeding suckler beef herds

B Vosough Ahmadi, M Nath, JJ Hyslop, CA Morgan, AW Stott

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

Management of beef suckler cattle herds requires a difficult but vitally important balance between farm profits, animal health and welfare and sustainable food production. A dynamic programming (DP) model was implemented to investigate the consequences of replacement and management decisions on the interactions and possible trade-offs between animal welfare, fertility and profitability in breeding beef suckler cattle herds. The model maximized profit from the current cow and all successors by identifying the best keep/replace decision. The 150 states incorporated in the DP model were all combinations of: ten cow-parity, five calving periods including one barren state (five in total) as fertility indicators and three body condition scores at weaning as an animal welfare indicator reflecting feeding and nutritional conditions of animals. Statistical models were fitted to data from a breeding suckler cattle herd, consisting of performance records of 200 cattle over 5 years, to parameterize the DP model. Estimated parameters used in the DP model were: (i) probabilities of transitions between states and (ii) probability of involuntary culling. These estimates were used in the form of conditional probabilities of successful or failed (as a result of involuntary culling) transitions to the next state. In addition, statistical models were used to estimate probability of calving difficulty. There was strong evidence (P< 0·001) that parity affected calving difficulty and weak evidence (P = 0·067) that parity affected the incidence of involuntary culling. The DP model outcomes indicated that cows calving very early, i.e. those who conceived in the first 21 days after artificial insemination, showed reduced frequencies of calving difficulty as well as voluntary culling, and so gave better financial returns than late-calving cows and barren cows. As a result, fewer replacements were needed that reduced the frequency of calving difficulty, further implying a win–win scenario for both profit and welfare. In contrast, in late-calving animals, the frequency of calving difficulty increased and they were less profitable and more prone to be culled. Results of sensitivity analysis showed that the optimum voluntary culling rate was sensitive to commodity market prices. These findings suggest well-informed nutrition and reproduction management could deliver a win–win outcome for profit and animal welfare.
Original languageEnglish
Pages (from-to)156 - 170
Number of pages15
JournalJournal of Agricultural Science
Volume155
Issue number1
Early online date22 Jul 2016
DOIs
Publication statusFirst published - 22 Jul 2016

Fingerprint

calving
beef
herds
culling (animals)
dynamic programming
breeding
animal welfare
profits and margins
cows
parity (reproduction)
statistical models
beef cattle
commodity prices
cattle breeding
market prices
food production
artificial insemination
animal health
profitability
body condition

Bibliographical note

1030804

Cite this

Vosough Ahmadi, B ; Nath, M ; Hyslop, JJ ; Morgan, CA ; Stott, AW. / Trade-offs between indicators of performance and sustainability in breeding suckler beef herds. In: Journal of Agricultural Science. 2016 ; Vol. 155, No. 1. pp. 156 - 170.
@article{17bee205050b4ba8b3b3339f00c58a0f,
title = "Trade-offs between indicators of performance and sustainability in breeding suckler beef herds",
abstract = "Management of beef suckler cattle herds requires a difficult but vitally important balance between farm profits, animal health and welfare and sustainable food production. A dynamic programming (DP) model was implemented to investigate the consequences of replacement and management decisions on the interactions and possible trade-offs between animal welfare, fertility and profitability in breeding beef suckler cattle herds. The model maximized profit from the current cow and all successors by identifying the best keep/replace decision. The 150 states incorporated in the DP model were all combinations of: ten cow-parity, five calving periods including one barren state (five in total) as fertility indicators and three body condition scores at weaning as an animal welfare indicator reflecting feeding and nutritional conditions of animals. Statistical models were fitted to data from a breeding suckler cattle herd, consisting of performance records of 200 cattle over 5 years, to parameterize the DP model. Estimated parameters used in the DP model were: (i) probabilities of transitions between states and (ii) probability of involuntary culling. These estimates were used in the form of conditional probabilities of successful or failed (as a result of involuntary culling) transitions to the next state. In addition, statistical models were used to estimate probability of calving difficulty. There was strong evidence (P< 0·001) that parity affected calving difficulty and weak evidence (P = 0·067) that parity affected the incidence of involuntary culling. The DP model outcomes indicated that cows calving very early, i.e. those who conceived in the first 21 days after artificial insemination, showed reduced frequencies of calving difficulty as well as voluntary culling, and so gave better financial returns than late-calving cows and barren cows. As a result, fewer replacements were needed that reduced the frequency of calving difficulty, further implying a win–win scenario for both profit and welfare. In contrast, in late-calving animals, the frequency of calving difficulty increased and they were less profitable and more prone to be culled. Results of sensitivity analysis showed that the optimum voluntary culling rate was sensitive to commodity market prices. These findings suggest well-informed nutrition and reproduction management could deliver a win–win outcome for profit and animal welfare.",
author = "{Vosough Ahmadi}, B and M Nath and JJ Hyslop and CA Morgan and AW Stott",
note = "1030804",
year = "2016",
month = "7",
day = "22",
doi = "10.1017/S0021859616000496",
language = "English",
volume = "155",
pages = "156 -- 170",
journal = "Journal of Agricultural Science",
issn = "0021-8596",
publisher = "Cambridge University Press",
number = "1",

}

Trade-offs between indicators of performance and sustainability in breeding suckler beef herds. / Vosough Ahmadi, B; Nath, M; Hyslop, JJ; Morgan, CA; Stott, AW.

In: Journal of Agricultural Science, Vol. 155, No. 1, 22.07.2016, p. 156 - 170.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Trade-offs between indicators of performance and sustainability in breeding suckler beef herds

AU - Vosough Ahmadi, B

AU - Nath, M

AU - Hyslop, JJ

AU - Morgan, CA

AU - Stott, AW

N1 - 1030804

PY - 2016/7/22

Y1 - 2016/7/22

N2 - Management of beef suckler cattle herds requires a difficult but vitally important balance between farm profits, animal health and welfare and sustainable food production. A dynamic programming (DP) model was implemented to investigate the consequences of replacement and management decisions on the interactions and possible trade-offs between animal welfare, fertility and profitability in breeding beef suckler cattle herds. The model maximized profit from the current cow and all successors by identifying the best keep/replace decision. The 150 states incorporated in the DP model were all combinations of: ten cow-parity, five calving periods including one barren state (five in total) as fertility indicators and three body condition scores at weaning as an animal welfare indicator reflecting feeding and nutritional conditions of animals. Statistical models were fitted to data from a breeding suckler cattle herd, consisting of performance records of 200 cattle over 5 years, to parameterize the DP model. Estimated parameters used in the DP model were: (i) probabilities of transitions between states and (ii) probability of involuntary culling. These estimates were used in the form of conditional probabilities of successful or failed (as a result of involuntary culling) transitions to the next state. In addition, statistical models were used to estimate probability of calving difficulty. There was strong evidence (P< 0·001) that parity affected calving difficulty and weak evidence (P = 0·067) that parity affected the incidence of involuntary culling. The DP model outcomes indicated that cows calving very early, i.e. those who conceived in the first 21 days after artificial insemination, showed reduced frequencies of calving difficulty as well as voluntary culling, and so gave better financial returns than late-calving cows and barren cows. As a result, fewer replacements were needed that reduced the frequency of calving difficulty, further implying a win–win scenario for both profit and welfare. In contrast, in late-calving animals, the frequency of calving difficulty increased and they were less profitable and more prone to be culled. Results of sensitivity analysis showed that the optimum voluntary culling rate was sensitive to commodity market prices. These findings suggest well-informed nutrition and reproduction management could deliver a win–win outcome for profit and animal welfare.

AB - Management of beef suckler cattle herds requires a difficult but vitally important balance between farm profits, animal health and welfare and sustainable food production. A dynamic programming (DP) model was implemented to investigate the consequences of replacement and management decisions on the interactions and possible trade-offs between animal welfare, fertility and profitability in breeding beef suckler cattle herds. The model maximized profit from the current cow and all successors by identifying the best keep/replace decision. The 150 states incorporated in the DP model were all combinations of: ten cow-parity, five calving periods including one barren state (five in total) as fertility indicators and three body condition scores at weaning as an animal welfare indicator reflecting feeding and nutritional conditions of animals. Statistical models were fitted to data from a breeding suckler cattle herd, consisting of performance records of 200 cattle over 5 years, to parameterize the DP model. Estimated parameters used in the DP model were: (i) probabilities of transitions between states and (ii) probability of involuntary culling. These estimates were used in the form of conditional probabilities of successful or failed (as a result of involuntary culling) transitions to the next state. In addition, statistical models were used to estimate probability of calving difficulty. There was strong evidence (P< 0·001) that parity affected calving difficulty and weak evidence (P = 0·067) that parity affected the incidence of involuntary culling. The DP model outcomes indicated that cows calving very early, i.e. those who conceived in the first 21 days after artificial insemination, showed reduced frequencies of calving difficulty as well as voluntary culling, and so gave better financial returns than late-calving cows and barren cows. As a result, fewer replacements were needed that reduced the frequency of calving difficulty, further implying a win–win scenario for both profit and welfare. In contrast, in late-calving animals, the frequency of calving difficulty increased and they were less profitable and more prone to be culled. Results of sensitivity analysis showed that the optimum voluntary culling rate was sensitive to commodity market prices. These findings suggest well-informed nutrition and reproduction management could deliver a win–win outcome for profit and animal welfare.

U2 - 10.1017/S0021859616000496

DO - 10.1017/S0021859616000496

M3 - Article

VL - 155

SP - 156

EP - 170

JO - Journal of Agricultural Science

JF - Journal of Agricultural Science

SN - 0021-8596

IS - 1

ER -