TY - JOUR
T1 - Transcriptomic Analysis of Circulating Leukocytes Obtained during the Recovery from Clinical Mastitis Caused by Escherichia coli in Holstein Dairy Cows
AU - Cheng, Zhangrui
AU - Palma-Vera, Sergio
AU - Buggiotti, Laura
AU - Salavati, Mazdak
AU - Becker, Frank
AU - Werling, Dirk
AU - Wathes, D. Claire
AU - McLoughlin, Niamh
AU - Fahey, Alan
AU - Carter, Fiona
AU - Matthews, Elizabeth
AU - Santoro, Andreia
AU - Byrne, Colin
AU - Rudd, Pauline
AU - O’flaherty, Roisin
AU - Hallinan, Sinead
AU - Wathes, D. Claire
AU - Fouladi, Ali
AU - Pollott, Geoff
AU - Bernardo, Beatriz Sanz
AU - Ferris, Conrad
AU - Wylie, Alistair
AU - Bell, Matt
AU - Vaneetvelde, Mieke
AU - Hermans, Kristof
AU - Hostens, Miel
AU - Opsomer, Geert
AU - Moerman, Sander
AU - De Koster, Jenne
AU - Bogaert, Hannes
AU - Vandepitte, Jan
AU - Vandevelde, Leila
AU - Vanranst, Bonny
AU - Ingvartsen, Klaus
AU - Sorensen, Martin Tang
AU - Hoglund, Johanna
AU - Dahl, Susanne
AU - Ostergaard, Soren
AU - Rothmann, Janne
AU - Krogh, Mogens
AU - Meyer, Else
AU - Foldager, Leslie
AU - Gaillard, Charlotte
AU - Ettema, Jehan
AU - Rousing, Tine
AU - Larsen, Torben
AU - de Oliveira, Victor H.Silva
AU - Marchitelli, Cinzia
AU - Signorelli, Federica
AU - Napolitano, Francesco
AU - Moioli, Bianca
AU - Crisà, Alessandra
AU - Buttazzoni, Luca
AU - McClure, Jennifer
AU - Matthews, Daragh
AU - Kearney, Francis
AU - Cromie, Andrew
AU - McClure, Matt
AU - Zhang, Shujun
AU - Chen, Xing
AU - Chen, Huanchun
AU - Zhao, Junlong
AU - Yang, Liguo
AU - Hua, Guohua
AU - Tan, Chen
AU - Wang, Guiqiang
AU - Bonneau, Michel
AU - Sciarretta, Marlène
AU - Pearn, Armin
AU - Evertson, Arnold
AU - Kosten, Linda
AU - Fogh, Anders
AU - Andersen, Thomas
AU - Lucy, Matthew
AU - Elsik, Chris
AU - Conant, Gavin
AU - Taylor, Jerry
AU - Triant, Deborah
AU - Gengler, Nicolas
AU - Georges, Michel
AU - GplusE Consortium
N1 - Funding Information:
This project received funding from the European Union’s Seventh Framework Programme (Brussels, Belgium) for research, technological development, and demonstration under grant agreement no. 613689. The views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/8/21
Y1 - 2022/8/21
N2 - The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection.
AB - The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection.
KW - ABC transporters
KW - antimicrobial peptides
KW - cow
KW - E. coli mastitis
KW - mammary gland
KW - MHC system
UR - http://www.scopus.com/inward/record.url?scp=85137338311&partnerID=8YFLogxK
U2 - 10.3390/ani12162146
DO - 10.3390/ani12162146
M3 - Article
C2 - 36009735
AN - SCOPUS:85137338311
SN - 2076-2615
VL - 12
JO - Animals
JF - Animals
IS - 16
M1 - 2146
ER -