Understanding the genetics of survival in dairy cows

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Premature mortality and culling causes great wastage in the dairy industry, as a large number of heifers born never become productive or are culled before their full lactation potential is reached. The objectives of this study were to characterize survival and estimate genetic parameters for alternative longevity traits that considered (1) the survival of replacement heifers and (2) functional longevity of milking cows in the UK Holstein Friesian population, using combined information from the British Cattle Movement Service and milk recording organizations. Mortality of heifers was highest in the first month of life and was proportionately highest in calves born during winter months. Heifer mortality tended to decrease with age until about 16 mo onward; it then gradually increased, expected to be associated with culls due to reproductive failure or problems during pregnancy and calving. In milking cows, days of productive life (DPL) was analyzed as an alternative to the current trait lifespan score. Cows that died in 2009 on average lived for 6.8 yr with an average production of 4.3 yr. Heritability estimates were low for both heifer and cow survival and were ~0.01 and ~0.06, respectively. The positive genetic correlation between heifer survival with lifespan score (0.31) indicates that bulls that sire daughters with longer productive lives are also likely to have calves that survive and become replacement heifers. However, the magnitude of the genetic correlation suggests that survival in the rearing period and the milking herd are different traits. Genetic correlations were favorable between DPL with somatic cell count and fertility traits indicating that animals with a longer productive life tend to have lower somatic cell count, a shorter calving interval, fewer days to first service, and require fewer inseminations. However, an antagonistic relationship existed between DPL with milk and fat yield traits.
Original languageEnglish
Pages (from-to)3296 - 3309
Number of pages14
JournalJournal of Dairy Science
Volume96
Issue number5
DOIs
Publication statusPrint publication - May 2013

Fingerprint

dairy cows
heifers
calves
cows
culling (animals)
calving interval
dairy industry
milking
insemination
genetic correlation
sires
calving
heritability
rearing
lactation
herds
milk
winter
cattle
lipids

Bibliographical note

1020991

Cite this

@article{5049e76ab8634c16976856f38d800561,
title = "Understanding the genetics of survival in dairy cows",
abstract = "Premature mortality and culling causes great wastage in the dairy industry, as a large number of heifers born never become productive or are culled before their full lactation potential is reached. The objectives of this study were to characterize survival and estimate genetic parameters for alternative longevity traits that considered (1) the survival of replacement heifers and (2) functional longevity of milking cows in the UK Holstein Friesian population, using combined information from the British Cattle Movement Service and milk recording organizations. Mortality of heifers was highest in the first month of life and was proportionately highest in calves born during winter months. Heifer mortality tended to decrease with age until about 16 mo onward; it then gradually increased, expected to be associated with culls due to reproductive failure or problems during pregnancy and calving. In milking cows, days of productive life (DPL) was analyzed as an alternative to the current trait lifespan score. Cows that died in 2009 on average lived for 6.8 yr with an average production of 4.3 yr. Heritability estimates were low for both heifer and cow survival and were ~0.01 and ~0.06, respectively. The positive genetic correlation between heifer survival with lifespan score (0.31) indicates that bulls that sire daughters with longer productive lives are also likely to have calves that survive and become replacement heifers. However, the magnitude of the genetic correlation suggests that survival in the rearing period and the milking herd are different traits. Genetic correlations were favorable between DPL with somatic cell count and fertility traits indicating that animals with a longer productive life tend to have lower somatic cell count, a shorter calving interval, fewer days to first service, and require fewer inseminations. However, an antagonistic relationship existed between DPL with milk and fat yield traits.",
author = "T Pritchard and MP Coffey and R Mrode and E Wall",
note = "1020991",
year = "2013",
month = "5",
doi = "10.3168/jds.2012-6219",
language = "English",
volume = "96",
pages = "3296 -- 3309",
journal = "Journal of Dairy Science",
issn = "0022-0302",
publisher = "American Dairy Science Association",
number = "5",

}

Understanding the genetics of survival in dairy cows. / Pritchard, T; Coffey, MP; Mrode, R; Wall, E.

In: Journal of Dairy Science, Vol. 96, No. 5, 05.2013, p. 3296 - 3309.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Understanding the genetics of survival in dairy cows

AU - Pritchard, T

AU - Coffey, MP

AU - Mrode, R

AU - Wall, E

N1 - 1020991

PY - 2013/5

Y1 - 2013/5

N2 - Premature mortality and culling causes great wastage in the dairy industry, as a large number of heifers born never become productive or are culled before their full lactation potential is reached. The objectives of this study were to characterize survival and estimate genetic parameters for alternative longevity traits that considered (1) the survival of replacement heifers and (2) functional longevity of milking cows in the UK Holstein Friesian population, using combined information from the British Cattle Movement Service and milk recording organizations. Mortality of heifers was highest in the first month of life and was proportionately highest in calves born during winter months. Heifer mortality tended to decrease with age until about 16 mo onward; it then gradually increased, expected to be associated with culls due to reproductive failure or problems during pregnancy and calving. In milking cows, days of productive life (DPL) was analyzed as an alternative to the current trait lifespan score. Cows that died in 2009 on average lived for 6.8 yr with an average production of 4.3 yr. Heritability estimates were low for both heifer and cow survival and were ~0.01 and ~0.06, respectively. The positive genetic correlation between heifer survival with lifespan score (0.31) indicates that bulls that sire daughters with longer productive lives are also likely to have calves that survive and become replacement heifers. However, the magnitude of the genetic correlation suggests that survival in the rearing period and the milking herd are different traits. Genetic correlations were favorable between DPL with somatic cell count and fertility traits indicating that animals with a longer productive life tend to have lower somatic cell count, a shorter calving interval, fewer days to first service, and require fewer inseminations. However, an antagonistic relationship existed between DPL with milk and fat yield traits.

AB - Premature mortality and culling causes great wastage in the dairy industry, as a large number of heifers born never become productive or are culled before their full lactation potential is reached. The objectives of this study were to characterize survival and estimate genetic parameters for alternative longevity traits that considered (1) the survival of replacement heifers and (2) functional longevity of milking cows in the UK Holstein Friesian population, using combined information from the British Cattle Movement Service and milk recording organizations. Mortality of heifers was highest in the first month of life and was proportionately highest in calves born during winter months. Heifer mortality tended to decrease with age until about 16 mo onward; it then gradually increased, expected to be associated with culls due to reproductive failure or problems during pregnancy and calving. In milking cows, days of productive life (DPL) was analyzed as an alternative to the current trait lifespan score. Cows that died in 2009 on average lived for 6.8 yr with an average production of 4.3 yr. Heritability estimates were low for both heifer and cow survival and were ~0.01 and ~0.06, respectively. The positive genetic correlation between heifer survival with lifespan score (0.31) indicates that bulls that sire daughters with longer productive lives are also likely to have calves that survive and become replacement heifers. However, the magnitude of the genetic correlation suggests that survival in the rearing period and the milking herd are different traits. Genetic correlations were favorable between DPL with somatic cell count and fertility traits indicating that animals with a longer productive life tend to have lower somatic cell count, a shorter calving interval, fewer days to first service, and require fewer inseminations. However, an antagonistic relationship existed between DPL with milk and fat yield traits.

U2 - 10.3168/jds.2012-6219

DO - 10.3168/jds.2012-6219

M3 - Article

VL - 96

SP - 3296

EP - 3309

JO - Journal of Dairy Science

JF - Journal of Dairy Science

SN - 0022-0302

IS - 5

ER -