Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen

RJB Bessa*, MRG Maia, E Jeronimo, AT Belo, ARJ Cabrita, RJ Dewhurst, AJM Fonseca

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


This study sought to distinguish liquid-(LAB) and detached (SAB1) and undetached (SAB2) solid-associated bacteria through their fatty acid (FA) and purine base (PB) profiles. Fatty acids and PB were also evaluated as internal microbial markers for estimating microbial biomass associated with rumen particles. Four merino rams fitted with rumen cannulae and fed dehydrated alfalfa pellets provided rumen contents. In 3 consecutive weeks, rumen contents were collected and samples of LAB and SAB1, total rumen content (TRC), washed rumen particles (WRP) and rumen particles after SAB1 extraction (ERP) were obtained and analysed for PB and FA. The SAB2 biomass composition was estimated from the non-NDF organic matter (OM) remaining in ERP. The concentration of total SAB biomass in particles was estimated using both PB and odd and branched-chain fatty acids (OBCFA). Concentrations of PB and OBCFA were highly correlated among the different rumen fractions. Marked differences between LAB and SAB populations occurred with LAB having higher PB content, lower FA content and a higher proportion (g/100 g fatty acids) of OBCFA than did SAB. The chemical composition of SAB1 and SAB2 was similar, except for the 15% higher crude protein content of the latter. The concentration of OBCFA (mg/g microbial OM) did not differ between bacterial fractions. The PB/OBCFA ratio (mg/mg) was higher in LAB (2.08) than in SAB (0.94). The ratio between branched-chain and odd-linear-chain FA was higher in LAB (2.26) than in SAB (1.46). Extraction of PB and OBCFA from WRP with our SAB detachment procedure was 61% and 31%, respectively. Estimated SAB1 and total SAB biomass (mg OM/g WRP) were 158 and 266, and 47 and 164, respectively, using PB and OBCFA as microbial markers. This study suggests that the OBCFA have potential as internal microbial markers in rumen ecosystem studies.
Original languageEnglish
Pages (from-to)197-206
JournalAnimal Feed Science and Technology
Issue number3-4
Publication statusPrint publication - Apr 2009


Dive into the research topics of 'Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen'. Together they form a unique fingerprint.

Cite this