Abstract
The aims of this study were to assess (1) the variation of protein metabolism biomarkers and factors affecting them during the transition period, (2) the association of each biomarker with skeletal muscle reserves and their changes, and (3) the association of these biomarkers with postpartum health, colostrum quality, reproduction, and milk production. For this purpose, 238 multiparous Holstein cows from 6 herds were used in a prospective cohort study. Plasma concentrations of 3-methylhistidine (3-MH) and 1-methylhistidine (1-MH) and serum concentrations of total protein (TP), albumin (ALB), urea nitrogen (BUN), and creatinine (SCR) were determined for each cow at -21, -7, 7, 21, and 28 d relative to calving. Clinical diseases were recorded during the first 28 d postcalving, and presence of subclinical ketosis (scKET) was investigated at 7 and 21 d. Colostrum quality was estimated by Brix refractometry. Reproduction data by 150 d in milk (DIM) and milk production records were also available. Linear mixed models including the fixed effects of time point, herd, parity, body condition score (-21 d), duration of dry period and postparturient diseases were fitted to assess the variation in each biomarker's concentration. The association between the biomarkers' concentration during the prepartum period with the odds for each postparturient disease and for a combined trait (CD_1-28), defined as the presence of at least one clinical condition during the first 28 d after calving, were assessed with separate binary logistic models for time points -21 d and -7 d. The relationship of each biomarker's concentration with longissimus dorsi thickness (LDT) and the changes in LDT (ΔLDT) was assessed with pairwise correlations. Separate general linear models were used to assess the association of each biomarker with colostrum Brix values and milk production traits. Finally, the associated hazard for first artificial insemination (AI) and for pregnancy by 150 DIM (PREG_150DIM) was assessed with Cox proportional hazard models, whereas odds for pregnancy to the first AI (PREG_1stAI) were assessed with binary logistic models. The level of 3-MH was affected mainly by herd, time points, and their interaction. Higher 3-MH was associated with increased odds for metritis and CD_1-28, increased hazard for PREG_150 DIM and with increased milk production. 1-Methylhistidine was affected mainly by herd, scKET and occurrence of displaced abomasum. Higher 1-MH was associated with better colostrum quality, increased odds for scKET, increased hazard for first AI by 150 DIM and with decreased milk production. Both 3-MH and 1-MH were weakly to moderately negatively correlated with LDT and moderately to strongly negatively correlated with ΔLDT at the corresponding time periods. Additionally, higher TP was associated with increased odds for metritis and CD_1-28 and increased milk production, while higher ALB was associated with increased odds for scKET and increased milk production. Moreover, higher BUN was associated with decreased odds for scKET, increased odds for PREG_1stAI and increased milk production. Higher SCR was associated with decreased odds for retained fetal membranes, metritis, and CD_1-28. Periparturient protein metabolism is significantly associated with postpartum health, colostrum quality, reproduction, and milk production; mechanisms involved require further investigation.
Original language | English |
---|---|
Pages (from-to) | 4056-4074 |
Number of pages | 19 |
Journal | Journal of Dairy Science |
Volume | 107 |
Issue number | 6 |
Early online date | 19 Jan 2024 |
DOIs | |
Publication status | Print publication - Jun 2024 |
Bibliographical note
Publisher Copyright:© 2024 American Dairy Science Association
Keywords
- Animals
- Biomarkers
- Cattle
- Colostrum/chemistry
- Female
- Lactation
- Methylhistidines
- Milk/chemistry
- Postpartum Period
- Pregnancy
- Prospective Studies
- Reproduction
- mobilization
- amino acids
- methylhistidine
- dairy cattle
- periparturient