
Scotland's Rural College

Using national movement databases to help inform responses to swine disease
outbreaks in Scotland: the impact of uncertainty around incursion time
Porphyre, T; Boden, LA; Correia-Gomes, C; Auty, HK; Gunn, GJ; Woolhouse, MEJ

Published in:
Scientific Reports

DOI:
10.1038/srep20258

First published: 01/02/2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Porphyre, T., Boden, LA., Correia-Gomes, C., Auty, HK., Gunn, GJ., & Woolhouse, MEJ. (2016). Using national
movement databases to help inform responses to swine disease outbreaks in Scotland: the impact of
uncertainty around incursion time. Scientific Reports, 6, [20258]. https://doi.org/10.1038/srep20258

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 31. May. 2023

https://doi.org/10.1038/srep20258
https://pure.sruc.ac.uk/en/publications/9f63ccbf-db24-448d-8ef8-0914d14c5d20
https://doi.org/10.1038/srep20258


1 

 

Using national movement databases to help inform responses to swine 1 

disease outbreaks in Scotland: the impact of uncertainty around incursion 2 

time 3 

Thibaud Porphyre
1*

, t.porphyre@ed.ac.uk 4 

Lisa A. Boden
2
, Lisa.Boden@glasgow.ac.uk  5 

Carla Correia-Gomes
3
, Carla.Gomes@sruc.ac.uk  6 

Harriet K. Auty
3
, Harriet.Auty@sruc.ac.uk  7 

George J. Gunn
3
, George.Gunn@sruc.ac.uk  8 

Mark E.J. Woolhouse
1
, Mark.Woolhouse@ed.ac.uk 

 
9 

 10 

1 
Centre for Immunity, Infection and Evolution, University of Edinburgh, King’s Buildings, Edinburgh, UK. 11 

2 
School of Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of 12 

Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.  13 

3 
Epidemiology Research Unit, SRUC, Drummondhill, Stratherrick Road, Inverness, UK 14 

 15 

*Corresponding author: Thibaud Porphyre, University of Edinburgh, King's Buildings, Ashworth 16 

Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, Scotland, UK. Tel: +44 (0)131 650 7263. 17 

Email: t.porphyre@ed.ac.uk 18 

19 

mailto:t.porphyre@ed.ac.uk
mailto:Lisa.Boden@glasgow.ac.uk
mailto:Carla.Gomes@sruc.ac.uk
mailto:Harriet.Auty@sruc.ac.uk
mailto:George.Gunn@sruc.ac.uk
mailto:Mark.Woolhouse@ed.ac.uk
mailto:t.porphyre@ed.ac.uk


2 

 

Abstract 20 

Modelling is an important component of contingency planning and control of disease outbreaks. Dynamic 21 

network models are considered more useful than static models because they capture important dynamic 22 

patterns of farm behaviour as evidenced through animal movements.  This study evaluates the usefulness of 23 

a dynamic network model of swine fever to predict pre-detection spread via movements of pigs, when there 24 

may be considerable uncertainty surrounding the time of incursion of infection. It explores the utility and 25 

limitations of animal movement data to inform such models and as such, provides some insight into the 26 

impact of improving traceability through real-time animal movement reporting and the use of electronic 27 

animal movement databases. The study concludes that the type of premises and uncertainty of the time of 28 

disease incursion will affect model accuracy and highlights the need for improvements in these areas.  29 

30 
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Introduction  31 

The epidemics of bovine spongiform encephalopathy in Europe
1
 and of foot-and-mouth disease in the UK

2
 32 

showed the importance of using mathematical models of disease transmission in providing key information 33 

to design contingency planning for animal disease outbreaks. By providing epidemiological insight that can 34 

be considered alongside  the complex interactions between social, economic and welfare outcomes of 35 

disease incursions and control strategies, models have helped to inform decisions on disease control
2-5

, and 36 

can also be used judiciously as tools to improve communication with non-expert stakeholders
6
. Models must 37 

be based on robust data and assumptions to usefully inform policies and add value to field-based control 38 

activities. However, disease control decisions during epidemic responses are made in the context of wide 39 

range of uncertainties. Improving our understanding of the impact of these uncertainties on infectious 40 

disease models outcomes is therefore a way to improve their capabilities to efficiently inform policy.    41 

Network models, which were once confined to physics and social science problems
7
, have proliferated in the 42 

field of human
8-10

 and animal
4,5,11,12

 health and are increasingly used to inform disease control strategies as 43 

part of national contingency plans. When applied to animal diseases, these models consider farms as nodes 44 

of a network that are linked by the transfer or movement of (potentially infected) animals. Animal 45 

movements are increasingly recorded in national databases, informing on the daily number of animals 46 

moved between all farms present in an industry. This large volume of data enables models to appropriately 47 

capture the dynamic changes in the contact structure between farms, and therefore enables them to directly 48 

adjust for the underlying farm-level economic and behavioural variations when moving animals. As such, 49 

predictions from dynamic networks models are potentially more accurate than those from models 50 

considering the animal movement network as static
13,14

.  51 

As movement of animals within the livestock industry carries the risk of transmitting infectious diseases 52 

across substantial geographical distances, dynamic network models have been increasingly used prior to 53 

disease outbreaks to improve preparedness. Particularly, dynamic network models have been used to assess 54 

the potential for pre-detection spread of infection via movements of animals
5,11

, identify regional and local 55 

movement patterns
4,11

, and provide guidance for the design of efficient control and surveillance strategies
4,12

. 56 

However, their use may go further, notably by estimating the extent of the disease spread that has already 57 



4 

 

occurred when disease incursions have been detected and restrictions on animal movements are 58 

implemented
15

. By quickly and accurately estimating the spatial extent of the pre-detection spread via 59 

movements of animals, they potentially offer additional tools to support field-based contact tracing, and 60 

increase the efficiency of disease control responses. However, little work has been done to exploit dynamic 61 

network models to such effect. 62 

The emphasis on using dynamic network models for contingency planning, but not during an outbreak, may 63 

be due to an assumption that they are less useful for making predictions of disease spread or identifying high 64 

risk farms in scenarios in which disease incursion has already occurred
6,16

. This assumption may be based on 65 

two prior beliefs: (i) that data quality may be compromised by time-lags in data recording; and (ii) that the 66 

date of infection, which is critical to appropriate data selection, may be difficult to ascertain with any 67 

certainty. Time-lags in data recording would mean that models have to rely on historical data. However, this 68 

problem has been minimised by the advent of electronic databases which mean farmers may directly report 69 

movements ahead of time. As a result, live animal movements, such as for sheep and pigs, are now available 70 

in real-time in Scotland (through the Scottish livestock electronic identification and traceability database 71 

ScotEID, https://www.scoteid.com/) to inform epidemiological modelling to predict the dissemination of a 72 

pathogen throughout the livestock industry in a timeframe relevant to disease control activities. 73 

Establishing an accurate date of infection is crucial for identifying which data should be included in the 74 

model. This can be difficult, as it depends on factors such as clinical presentation and the success of field-75 

based contact tracing procedures, both of which can vary widely. The impact of this uncertainty around date 76 

of infection may depend on the temporal dynamism in the pattern of animal movements between farms, and 77 

differences in farm trading behaviour, in a given livestock industry. This may affect model predictions (and 78 

the uncertainty around them) of the patterns of disease spread.  79 

The objective of this study is to assess the usefulness of dynamic network models for predicting the spatial 80 

extent of the pre-detection spread via movements of animals, when there may be considerable uncertainty 81 

surrounding the time of incursion of infection. In order to achieve this objective, we have focused on 82 

diseases of pigs (e.g. swine fevers such as classical swine fever (CSF) or African swine fever (ASF) viruses) 83 

https://www.scoteid.com/
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which have non-specific clinical signs as well as a high potential to be transmitted through animal 84 

movements
17,18

. These characteristics provide a useful model scenario because of the challenging nature of 85 

disease detection and the increased potential for silent spread within the pig population. We then explored 86 

the usefulness and limitations of using pig movement data (using ScotEID as an exemplar) to inform models 87 

when attempting to respond to an infectious disease incursion. Thus the results of this study should also 88 

provide insight into the impact of improving traceability through real-time animal movement reporting and 89 

the use of electronic animal movement databases. 90 

Results 91 

Impact of uncertainty in infection time 92 

We looked at the extent to which inaccuracy in defining the disease incursion date may impact on the 93 

accuracy of predictions of pre-detection spread of acute swine diseases via movements of pigs. A premises-94 

based model was developed to simulate their spread through the Scottish swine industry via movements of 95 

pigs, in which gathering places (such as markets, and collection centres) were explicitly modelled together 96 

with pig producers. In the first instance, we considered the extreme case where infection occurs if at least 1 97 

animal from an infected premises is received by a susceptible one. In this situation, the “infection paths” Γt,i 98 

of farms that were infected via movements of animals from a single pig producer i was computed for each 99 

Monday of the year 2012. Here, we considered all i
th 

producers that were active during the period [t0, t0+T] 100 

eligible to be an index-case, where t0 is the incursion date and T is the “pre-detection period” (that is, the 101 

period between the date of the incursion t0 and the date of the first detection of the disease). We then 102 

compared the infection paths Γt,i with those Γt+δ,i generated when time of infection t0 is inaccurately estimated 103 

by an error δ ranging from -7δ0 to 7δ0. In this study, infection path Γt,i refers to the “correct” full epidemic 104 

tree that is generated by a single infection event at time t0 and left freely spreading for the pre-detection 105 

period [t0, t0+T], while Γt+δ,i refers to the “predicted” full epidemic tree when the incursion date is 106 

inaccurately estimated and for which the pre-detection period is [t0+δ, t0+T–δ]. We considered, δ0=7 days 107 

and T=60 days
19

. 108 

In Figure 1, we show how increasing uncertainty around the time of incursion may affect one’s ability to 109 

accurately predict not only the number of premises involved in the full epidemic tree but also their identity.  110 
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Overall, progressively increasing the error δ around the time of the incursion from δ0 to 7δ0 yielded a marked 111 

reduction in the correlation between sizes (i.e., the number of premises involved in) of infection paths Γt,i 112 

and Γt+δ,i (Figures 1a-b). Although this reduction was consistent across paths of all sizes (Figures 1a), it was 113 

more pronounced for paths of larger sizes (Figure 1b). Also, there was a clear divide between infection paths 114 

generated from commercial producers and those generated from non-commercial producers (Figure 1c). 115 

Despite a wide uncertainty on the time of the incursion, the correlation remained high between infection 116 

paths generated by commercial producers (Spearman’s correlation coefficient ρ>0.60), whether assured or 117 

non-assured, for errors ranging from -7δ0 to 4δ0. In contrast, correlation between infection paths becomes 118 

weaker for incursions in non-commercial producers, with ρ <0.60 for errors of ±3δ0.  119 

In order to see if we could accurately predict which individual premises would be involved in epidemics 120 

despite some inaccuracy in the incursion time, we compared the concordance between infection paths Γt,i and 121 

Γt+δ,i generated from the same index-case i, by calculating the Jaccard similarity index J(Γt,i,Γt+δ,i). The 122 

Jaccard index measures the fraction of common premises within paths |ξt,i  ξt+δ,i| among the total number of 123 

premises |ξt,i  ξt+δ,i| involved in both paths. Here, we only focused on infection paths involving more than 124 

10 infected premises. 125 

Progressively increasing the error around the infection time up to 7δ0 revealed a reduction in the median 126 

degree of overlap between paths (Figure 1d). The rate of this reduction differed, however, whether the 127 

incursion time is believed earlier (i.e. δ<0) or later (i.e. δ>0) than the true one. Overall, an error of -4δ0 in the 128 

infection time yielded 77% (95% CI 0.76 - 0.79) overlaps between the true and predicted paths, whereas an 129 

error of >2δ0 is enough to create completely different paths with paths involving, on average, less than half 130 

of common premises.  131 

Unsurprisingly, variations between producer types were observed in the degree of overlap between Γt,i and 132 

Γt+δ,i. While the degree of overlap between predicted and the true paths generated by commercial producers 133 

followed closely the general trend, it differs greatly when considering paths generated by non-commercial 134 

small producers. This was expected, because most paths of >10 infected premises have been generated by 135 

commercial producers. However, differences between the degree of overlap for paths generated by 136 
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commercial and those by non-commercial producers depends on the direction of the error δ: when δ<0, 137 

predicted paths generated by non-commercial producers have a greater number of common premises with 138 

the true path, whereas paths would show a completely different pattern (i.e. J(Γt,i,Γt+δ,i)<10%) from >4δ0 139 

(Figure 1d). These results suggest that if incursion occurs in non-commercial producers, conservative 140 

estimates in incursion times would be preferential. However, this may not be true for incursion occurring in 141 

commercial producers as a trade-off may exist between optimising the proportion of premises that are truly 142 

on the infection path (true positives) and minimising the proportion of premises that are not (false positives). 143 

Figure 2 explores how these two epidemiological measures vary with δ for paths generated by the different 144 

producer types. Over-estimating incursion times for outbreaks generated from commercial producers 145 

(whether assured or not), would increase the risk of misclassification. For example, inferences generated for 146 

outbreaks from non-assured and from assured commercial producers when δ =-5δ0 would involve 24% (95% 147 

CI 22% - 29%) and 39% (95% CI 37% - 41%) of false positives, respectively (Figure 2b). 148 

So far in this analysis, the potential for spread of infection via movements of animals has been evaluated 149 

considering that any movement from infected premises during the pre-detection period would result in 150 

disease transmission to susceptible farms. In reality, the prevalence of disease within infected premises will 151 

determine what proportion β of its livestock becomes infectious. This, together with the number of animals 152 

that are being moved off, will determine what proportion of movements will contain infectious animals. To 153 

gain general insight and ensure robustness of the results to variation in β, 10,000 simulations for each 154 

Monday of the year 2012 with a random index-case per simulation were carried (i.e., total of 570,000 155 

simulations). For each incursion date t0, the infection paths Γ’t,i of farms that were infected via animal 156 

movements from a single pig producer i was then computed and compared to the infection paths Γ’t+δ,i that 157 

were predicted when an error δ around the time of the incursion is made. As above, Γ’t,i and Γ’t+δ,i are the 158 

“correct” and “predicted” partial epidemic tree, respectively, and correspond to all farms that have a non-null 159 

probability of being infected via animal movements from a single pig producer i. Figure 3 shows that, 160 

whether comparison is made with the “correct” full epidemic tree Γt,i (i.e. when β=1) or with the “correct” 161 

partial epidemic tree Γ’t,i (i.e. when β<1), qualitatively similar results as in Figure 1 are obtained. However, it 162 

further appears that decreasing the value of β would reduce the effect of δ when predicting the size of the 163 
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infection path (Figure 3a). It is to note, however, that this result may give a false sense of security as the 164 

degree of overlaps between correct and predicted paths still sharply decreases with increasing error δ around 165 

the time of the incursion from δ0 to 7δ0 (Figure 3b). 166 

Intrinsic structure of infection paths 167 

Although our findings suggest that inferring the spread of an epidemic from dynamic network models is 168 

precarious when the date of the disease incursion is unknown, infection paths may have some intrinsic 169 

structure which may still guide contact tracing procedures. Previously, such a structure was found in the 170 

Italian cattle industry by comparing epidemic trees and regrouping index-cases which generated similar 171 

trees, thereby providing critical information to optimize surveillance systems and define rapid containment 172 

strategies
4
. Applying a similar method for the Scottish swine industry, however, would only result in 173 

regrouping producers that belong to the same business or are part of the same breeding pyramid. Instead, we 174 

looked at the producer type of both the index case and all farms that have been infected via the movement of 175 

animals when considering β=1, and determined, for all full epidemic tree Γt,i that gave rise to at least 10 176 

cases from the year 2012, the proportion of producers of each type that were involved in each infection path. 177 

The results are summarized in Figure 4.  178 

If disease incursion occurs in the herd of a small producer, the mean risk of disease spillover into assured 179 

producers is low (0.011); and similar to the mean risk of disease spillover from assured producers to small 180 

producers (0.032). Epidemics which start in a small producer spread into at least one assured producer in 181 

only 1.9% of the incursions. However, once an assured producer is infected, 60% (Q1-Q3: 17% - 71%) of 182 

the premises in the generated infection paths would belong to assured producers. In contrast, epidemics 183 

generated from assured producers would spread into small producers in 39% of the incursions, but would not 184 

involve many of them, with only 8% (Q1-Q3: 2% - 27%) of premises in these infection paths belonging to 185 

small producers. These findings are the consequence of producers adhering to quality assurance scheme 186 

guidelines on risks associated with animal trading
20

, confirming that excluding interactions with producers 187 

that have lower biosecurity standards is a good biosecurity practice
21

. Such a result may constitute a basis for 188 

the development of qualitative rules modulating surveillance activities in the face of an epidemic.  189 
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Non-assured commercial producers appear to have a totally different epidemiological profile (Figure 4). 190 

Non-assured commercial producers have a consistently high probability (> 95%) of being on an infection 191 

path and make up, on average, 17% (Q1-Q3: 9% - 22%) of premise in these paths, regardless of the producer 192 

type of the incursion. In addition, epidemics generated by non-assured producers show a high likelihood of 193 

infecting both small producers (0.62) and assured producers (0.85). This result highlights that Scottish swine 194 

producers who are commercially driven but do not belong to assurance schemes may potentially represent 195 

“epidemiological” bridges between non-commercial and commercial partners, likely because they 196 

implement lower biosecurity, particularly with regard to sourcing and sending pigs, compared to assured 197 

commercial producers. Therefore, improving biosecurity and targeting surveillance to non-assured producers 198 

may be particularly beneficial to optimise responses to disease incursions. 199 

Discussion 200 

In order to improve preparedness for disease incursion, it is critical to have some understanding of model 201 

resiliency to uncertainties which fundamentally underlie the stochastic nature of disease control activities. In 202 

this study, we evaluated the resilience of dynamic network models in predicting disease spread after disease 203 

incursion, when there may be considerable uncertainty surrounding the timing of infection. A model which 204 

predicts the spread of swine fevers was chosen as an exemplar because of the characteristics of the disease 205 

and its parameterisation using pig movement data from an electronic database. This has particular relevance 206 

and potential policy impact because ASF virus has recently spread within the eastern European region
22

 and 207 

the middle east
23

, and now poses an imminent threat to the European swine industry
24,25

. Although there are 208 

measures in place to reduce the risk of introduction of disease, such as restrictions on the movement of live 209 

pigs and animal products in affected areas, and regulations on animal swill feeding (which has been banned 210 

in the European Union since 2002), further incursions and spread of these diseases throughout Europe are 211 

considered likely
24,26,27

.  212 

Our analysis not only confirmed that increasing the uncertainty around the incursion date significantly 213 

reduced the ability of dynamic network models to predict epidemic characteristics, such as epidemic size, or 214 

specific premises that become infected, but also quantified the magnitude of the loss of accuracy of 215 

predictions. For example, erroneously estimating the time of incursion more than three weeks earlier appears 216 
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to generate a low accuracy of predicting cases (i.e. less than 60%, Figure 1d), which would miss between 217 

30% to 50% of the potentially infected farms (Figure 2a). Although such a measurement bias may 218 

potentially generate longer and more severe epidemics, it may be preferable to the alternative 219 

misclassification error. A prediction that a farm is potentially infected, when it is not likely to be because of 220 

the true absence of contact with an at-risk farm, may have unintended negative consequences for resource 221 

allocation (of veterinarians which may be needed more urgently elsewhere) and farmer welfare and 222 

behaviour (in response to the fear for potential loss of livestock and livelihood).  223 

The type of premises where the incursion occurs can drastically impact on the scale of both of these biases 224 

and, therefore, on the resilience of predictions to temporal uncertainties. In the Scottish swine industry, the 225 

predictability of the number of premises infected via animal movement (Figure 1c) and of specific premises 226 

that become infected (Figure 1d) differ whether epidemics are generated by commercial or non-commercial 227 

producers. While our results indicate that all inferences produced from dynamic network models clearly 228 

suffer when the time of infection is estimated earlier (Figures 1d and 2), more conservative estimates of time 229 

of infection appear only preferable when incursion occurs in small producers. In this situation, widening the 230 

time window considered for the incursion would ensure that the incursion is included while not losing 231 

performance. Although this may be counterintuitive, it could be explained by the frequency of movements 232 

occurring from small producers. It has been previously shown that the rate of movement from and to small 233 

producers in Scotland is four to ten times lower than commercially-driven producers
20

, with an average of a 234 

movement every 29 weeks. It is therefore likely that increasing the time window for the incursion would 235 

include most of the movements that may be infectious while avoiding the inclusion of a large number of 236 

farms that are not infected. These results suggest that widening the time window considered for the incursion 237 

would provide a cost-efficient strategy when responding to incursion of infectious diseases in small 238 

producers, avoiding wasting resources that would be required to establish a precise incursion date. 239 

In the model, we have first assumed that the trade of at least one animal between infected and susceptible 240 

premises was sufficient to allow infection to occur. It is obvious that this assumption may overestimate the 241 

extent of disease spread via movements of pigs (although bearing in mind that this model did not consider 242 

the potential for spread by other routes), as the infection process between farms is stochastic and depends on 243 
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the within-farm prevalence as well as the virulence of the relevant outbreak strain. However, these 244 

assumptions seem appropriate because they not only increase the ease of the comparison between epidemic 245 

trees, but also enable (1) robust estimates of the potential geographical extent of disease spread that is 246 

consistent with contact tracing procedures and (2) communication of the general implication of temporal 247 

uncertainties in model inferences to policy makers (and model users in general). Nevertheless, varying the 248 

probability of transmission did not change the qualitative outcome of our analysis (Figure 3).  249 

It is clear from this study that on detection of an incursion, effort should be focused on obtaining an accurate 250 

incursion date. Improved accuracy of this estimate will improve the validity of epidemiological outputs from 251 

dynamic network models at early stages of an epidemic, and therefore will optimise the identification of the 252 

sources of infection and any presumed susceptible in-contact animals. However, quick detection of disease 253 

incursions is also critical. While the role of small producers in the spread of swine diseases has been 254 

previously shown
28,29

, routine surveillance activities (i.e. surveillance conducted not during an outbreak) 255 

mostly target assured commercial producers (for example abattoir inspection, veterinary/health scheme 256 

monitoring). Superficially, this risk-based surveillance strategy is reasonable because of the important 257 

influence of commercial producers on the sustainability of pig products (and the pig industry) and thus, food 258 

security
30

. However, Figure 4 suggests that exclusively targeting assured commercial producers during 259 

routine surveillance activities will likely miss incursion events in backyard producers. Simulation studies 260 

looking at the spread of CSF in Bulgaria, where small producers are believed to play a role in the persistence 261 

of the disease
31

, have shown that infections from small producers to assured producers were rare
32

. Although 262 

consistent with our findings (Figure 4), our results also indicated that non-assured commercial producers 263 

may constitute a bridge of infection between the non-commercial and commercial sectors of the swine 264 

industry in Scotland. With regards to improving surveillance for incursions of emerging swine diseases in 265 

Scotland, non-assured commercial producers may represent a sentinel population which would allow the 266 

detection of incursions in the non-commercial sector of the industry. 267 

In this study, we assessed the usefulness of national electronic animal movement databases as a tool for 268 

traceability by examining the degree to which uncertainty around incursion time may affect predictions on 269 

the pre-detection spread of emerging swine diseases such as CSF and ASF in Scotland. Our results on 270 
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movement patterns of swine in Scotland are also important for other exotic diseases of swine (e.g. foot-and-271 

mouth disease) and may have relevance for other swine industries. Although the pig industry in Scotland is 272 

small, commercial production is well organised and focuses on assured production of high quality farrow-to-273 

finish pigs. The pig industry in Scotland also shows a relative high diversity of producer types, with a large 274 

proportion of non-commercial pig holdings
20

. The Scottish swine industry may then represent a good 275 

example for similar industries, where non-commercial pig farming has an important place.  276 

In Scotland,  movements of swine shows a lack of seasonality
20

, similar to what has been reported in other 277 

countries
12,33

. It may therefore be possible to extrapolate these results to other similarly structured pig 278 

populations. In contrast, more work is required to determine whether these findings are applicable to other 279 

livestock sectors. The magnitude and directionality of movements of cattle and sheep in Scotland are highly 280 

seasonal. As such, these patterns will likely have an impact on the probability of epidemic take off
5,11

, and 281 

therefore are also likely to affect the predictability of the network structure in these sectors.  282 

In conclusion, the type of premises and the uncertainty of the time of disease incursion will affect dynamic 283 

network model accuracy and thus, usefulness. Cursorily, it may appear that if the incursion time is uncertain, 284 

using conservative estimates of incursion time (i.e. covering a wider time window) would increase the 285 

probability of detecting all potentially infected farms. However, this approach also generates a larger number 286 

of premises that would require field-based investigation (of which a higher proportion would be negative), 287 

which would be challenging when resources are limited. Resources may be better placed trying to more 288 

accurately determine the incursion time, since dynamic network models can make valuable predictions to 289 

help with disease control and resource allocation if the incursion time is known. In such situation, efforts in 290 

improving surveillance prior to disease incursion are critical to optimise responses to disease incursions.  291 

Methods  292 

Data 293 

All movement data were extracted from the Scottish livestock electronic identification and traceability 294 

database (ScotEID) which came into use in November 2011. We refer to 
20

 for further details on the data 295 

collection, process and quality as well as some preliminary descriptive analyses.  296 
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Briefly, under Scottish (SSI 2011/351) and European legislation (Commission Decision 2000/678/EC), all 297 

pig keepers moving animals are required to register online with ScotEID and electronically record any 298 

movements ahead of time. To avoid selection bias due to inevitable missing or non-reported movements in 299 

the early stages of implementation of the database, we restricted our analysis to all movements recorded 300 

from January 1
st
 2012 to May 31

st
 2013. We used January 1st 2012 for the start of the study period, on the 301 

basis that (1) it corresponds to the time when the previous movement database (the Scottish Animal 302 

Movement System, SAMS) recording Scottish animal movements ended (i.e. November 2011), and (2) there 303 

has been a stabilisation of the movement pattern since December 2011.  304 

The database provides a comprehensive picture of all movements of pigs in Scotland at the batch level. As 305 

such, each movement record reports the County Parish Holding (CPH) identifier and postcode for departures 306 

and destinations, the number of animals involved, and the date of the movements. Details of premises type 307 

for departures and destinations are recorded in the movement database, allowing slaughterhouses, markets, 308 

show-grounds and ferry collection centres to be differentiated from agricultural holdings. Note that all 309 

markets recorded in ScotEID operate as auctioneers holding dedicated sales/collections of pigs for onward 310 

consignment to a slaughterhouse, also named “red markets”. Collections of animals that are destined to be 311 

slaughtered are therefore regularly carried out in these markets, but remain separated from the other 312 

activities of such premises, particularly activities dedicated to sales of pigs between producers.  313 

Pig producer types 314 

Through the CPH identifier, the ScotEID movement database was linked to the 2011 Scottish Agricultural 315 

Census, and to the 2010 GB Agricultural Census, to obtain information on the total number of pigs and sows 316 

present on farm. We further link the data to the 2013 Quality Meat Scotland (QMS) register (for Scottish 317 

premises) and to the 2013 Red Tractor register (for non-Scottish premises) to identify if producers were 318 

members of a health quality assurance scheme. Pig producers were then classified according to their pig 319 

population size, movement activity and the health quality assurance scheme membership
20

: 320 
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1. “Small pig producers”: agricultural holdings with an unknown number of pigs; or less than five 321 

sows, and/or less than 10 finishers; and showing no records of movements of more than 50 pigs 322 

within the study period. 323 

2. “Non-assured commercial producers”: agricultural holdings with more than five sows and/or more 324 

than  10 finishers; or showing records of movements of more than 50 pigs during the study period,  325 

but do not belong to a quality health assurance scheme from QMS or Red Tractor, the main British 326 

assurance schemes. 327 

3. “Assured commercial producers”: agricultural holdings with more than five sows and/or more than 328 

10 finishers; or showing records of movements with more than 50 pigs during the study period but 329 

also belong to a quality health assurance scheme from QMS and/or Red Tractor. 330 

Infection path 331 

The spread of disease within the Scottish swine industry was modelled using a simple stochastic discrete-332 

time SI model. Our model treated each premises involved in the movement of Scottish pigs as a single unit. 333 

In this model, all premises are susceptible (S) to the infection at the start of the epidemics, except for a single 334 

premises, chosen at random, that would initially be at the infected, and infectious, state (I). During the course 335 

of an epidemic, disease passes from infected premises i to susceptible ones j via movements of pigs with a 336 

probability Mij,t such as   tijN
tijM ,11,  , where β is the probability that a single pig from i may carry 337 

the disease and potentially transmit it to j (somewhat corresponding to the within-herd prevalence), Nij,t the 338 

number of pigs that moved from i to j per time-step t and with movements of pigs synchronously updated at 339 

each time-step. Although other transmission routes have also been implicated in the spread of swine fevers 340 

(such as spread via fomites, wild boar, semen or pig products), only infection through live pig movements 341 

was considered as it the most common transmission route 
17,18

. Here, the model is seeded at incursion time t0, 342 

progresses in discrete time steps t of one day, and runs for a fixed period T.  343 

In addition to swine producers, gathering places (e.g. markets, show grounds, and ferry collection centres) 344 

were considered in the spread of diseases. Regulations are in place in Scotland, as in most EU countries, to 345 

ensure that the spread of pathogens via movements of animals through gathering places is limited. Gathering 346 

places should not keep pigs overnight and have cleaning and disinfection implemented after each day of 347 
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activity (Council Directive 97/12/EC). As such, the model considers that all infected gathering places would 348 

go back to the susceptible state after one day (thereby following a SIS process), whereas infected swine 349 

producers would remain infected for the remaining of the simulation period T. As a consequence, epidemics 350 

were considered starting by a swine producer only. The model was used only to look at the spread of disease 351 

before detection. Therefore the control measures that would be initiated on identification of the disease (such 352 

as culling of pigs on infected premises, movement restrictions) were not included in the model. 353 

To ensure that only the heterogeneity and the structure of the dynamic network formed by the movements of 354 

pigs were driving the modelled epidemics, all swine producers involved in the movements of pigs were 355 

considered identical, such that their producer type or herd size would not have any effect on the transmission 356 

dynamics. Unless otherwise stated, we considered the extreme case where infection occurs if at least one 357 

animal from an infected premises is received by a susceptible one, i.e. when β = 1. It is obvious that, given 358 

such a model structure, the characteristics of simulated epidemics would be overestimated and would not 359 

reflect the intrinsic potential of disease spread in the Scottish swine industry. However, such a model 360 

provides information on the maximum infection tree generated by each index-case via movements of 361 

animals, which not only provides an estimate of the maximum epidemic size generated by the movement of 362 

animals for the considered T, but also identifies all premises that are likely to be infected. Furthermore, such 363 

a model structure provides an estimate of infection trees for each incursion location that is easily comparable 364 

between time periods.  365 

366 
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Figure legends 476 

Figure 1. Comparison between the correct infection path and predicted paths generated when the error δ in 477 

the time of the incursion ranges from -7δ0 to 7δ0. (a) Lines plot showing the smoothed size of the predicted 478 

full epidemic tree Γt+δ,i as a function of the size of the correct full epidemic tree Γt,i. (b) Changes in the 479 

Spearman correlation coefficient between the size of Γt,i and that of Γt+δ,i as a function of the error δ in the 480 

time of the incursion. Correlation coefficients are computed either upon all generated infection paths or upon 481 

infection paths of >10 infected premises. (c) Changes in the Spearman correlation coefficient between the 482 

size of Γt,i and that of Γt+δ,i as a function of δ and stratified by the producer type of the index-case. (d) Quality 483 

of infection path prediction, as measured by the median Jaccard similarity index, as a function of δ and 484 

stratified by the producer type of the index-case. Shaded areas around each line shown in (a)-(d) represent 485 

their respective confidence interval. Here, δ0=7days. Diagonal solid line in (a) indicates perfect concordance 486 

between the true and predicted length of infection paths. The vertical solid line in (b)-(d) indicates the time 487 

of the correct incursion time. 488 

Figure 2. Proportions of true (a) and false (b) positives between the correct full infection path and predicted 489 

paths generated when the error δ in the time of the incursion ranges from -7δ0 to 7δ0. Here, δ0=7days. 490 

Points/lines represent the observed median proportions, stratified as a function of the producer type of the 491 

index-case, whereas shaded areas represent their respective 95% confidence interval. Only infection paths of 492 

>10 infected premises are used. The vertical solid line indicates the time of the correct incursion time. The 493 

proportion of true positives measures the fraction of common premises within paths |ξt,i  ξt+δ,i| among the 494 

number of premises |ξt,i| that are on the correct path. The proportion of false positives measures the fraction 495 

of uncommon premises within paths 1 – |ξt,i  ξt+δ,i| among the number of premises |ξt+δ,i| that are on the 496 

wrong path. 497 

Figure 3.  Comparison between the correct infection path and paths generated when the error δ in the time of 498 

the incursion ranges from -7δ0 to 7δ0 and when imperfect transmission occurs. (a) Changes in the Spearman 499 

correlation coefficient between the size of the correct infection path and paths generated when both the error 500 

δ in the time of the incursion and the transmission probability β vary. Quality of infection path prediction, as 501 
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measured by the median Jaccard similarity index (b), proportion of true (c) positives and proportion of false 502 

positives (d) between the correct infection path and paths generated when both δ and β vary. Solid and dotted 503 

lines indicate how measures may change when comparing predicted partial infection path Γ’t+δ,i to either the 504 

correct partial epidemic tree Γ’t,i generated with δ=0 and β<1 (solid) or the correct full epidemic tree Γt,i 505 

generated with δ=0 and β=1 (dotted). Shaded areas around each line shown in (b)-(d) represent the 506 

confidence interval around the median. Here, δ0=7days. The vertical solid line in (a)-(d) indicates the time of 507 

the correct incursion time. 508 

Figure 4. Proportion of non-assured commercial, assured commercial and small non-commercial producers 509 

involved in infection paths of >10 infected premises generated by each producer type. Here, columns 510 

indicate the producer type of the index-case, whereas rows indicate the type of the producers that are 511 

involved in each infection path. The thickness of the shapes is proportional to the density of data points 512 

along the x-axis.  513 


