
Scotland's Rural College

Proportion of sewage sludge to soil influences the survival of Salmonella Dublin and
Escherichia coli
Ellis, S; Tyrrel, S; O'Leary, E; Richards, K; Griffiths, BS; Ritz, K

Published in:
Clean - Soil, Air, Water

DOI:
10.1002/clen.201800042

First published: 27/01/2018

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (APA):
Ellis, S., Tyrrel, S., O'Leary, E., Richards, K., Griffiths, BS., & Ritz, K. (2018). Proportion of sewage sludge to soil
influences the survival of Salmonella Dublin and Escherichia coli. Clean - Soil, Air, Water, 46(4), 1 - 7.
[1800042]. https://doi.org/10.1002/clen.201800042

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Jan. 2022

https://doi.org/10.1002/clen.201800042
https://pure.sruc.ac.uk/en/publications/5132c67e-621d-452a-b9e6-06177cf898d5
https://doi.org/10.1002/clen.201800042


1 
 

Authors’ accepted manuscript 23 Jan 2018 

CLEAN: DOI: 10.1002/clen.201800042 

 

 

Proportion of sewage sludge to soil influences the survival of Salmonella Dublin, 

and Escherichia coli 

 

Stephanie Ellis1,2, Sean Tyrrel2, Emma O'Leary 1,3, Karl Richards1, Bryan Griffiths4, and Karl Ritz 2,5,* 

 
1 Environment Research Centre, Teagasc, Johnstown Castle, County Wexford, Ireland 
2 Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK 

3 Current address: Danone Nutricia Early Life Nutrition, Rocklands, Drinagh, Wexford, Ireland 

KR 
4 SRUC, Crop and Soil Systems Research Group, King's Buildings, West Mains Road, Edinburgh, EH9 

3JG, UK 
5 School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, 

Leicestershire LE12 5RD, UK 

 

Corresponding author.  

E-mail address: karl.ritz@nottingham.ac.uk  

 

Abstract  

The survival of enteric pathogens in sewage sludge could lead to their transferral into the soil 

environment and subsequent contamination of crops and water courses. This, in turn, could increase the 

potential spread of gastrointestinal disease. This work aimed to determine the persistence of several 

microorganisms, co-introduced with sewage sludge, when exposed to varying proportions of sewage 

sludge to soil. Three microcosm-based studies were established, inoculated with Salmonella Dublin or 

an environmentally-persistent strain of Escherichia coli (quantified periodically over a period of 42 

days), or indigenous sewage sludge E. coli (quantified over a period of 56 days). Treatments consisted 

of a mixture containing: 0, 15, 25, 50, 75 and 100% soil or sludge, depending upon the experiment. 

Each introduced microorganism declined significantly over time, with greater quantities of soil 

generally instigating greater die-off particularly in the cases of environmentally-persistent E. coli and S. 

Dublin. However, this relationship was not proportionally related as sludge/soil mixtures showed 

greater declines than pure soil treatments. In contrast, indigenous sewage sludge E. coli had a more 

consistent decline across all treatments. This may indicate that indigenous strains are more resilient and 

may be indicative of natural behaviour. Moreover, the effects of soil-borne factors on pathogen 

attenuation were context dependent and non-linear, possibly arising from the relative spatial 

distribution of introduced sludge and attendant microbes in soil.  
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Abbreviations: ANOVA, analysis of variance; CFU, colony-forming units; DS, dry solids; MLGA, 
membrane lactose glucuronide agar; MRD, maximum recovery diluent; OM, organic matter; WWTF, 
wastewater treatment facilities; XLD, xylose-lysine-desoxycholate 
 

1. Introduction 

Sewage sludge can confer improved structure and fertility to soil through the addition of organic matter 

(OM) and nutrients [1]. However, sewage sludge can harbour enteric pathogens, shed in the faeces of 

infected individuals and accumulate at wastewater treatment facilities (WWTFs) [2]. Furthermore, 

these pathogens are capable of surviving the treatment processes implemented at WWTFs [3, 4]. 

Therefore, their survival in sewage sludge and the subsequent use of this product as an agricultural 

fertiliser and soil conditioner could lead to the transfer of enteric pathogens into the soil environment. 

This could subsequently contaminate crops and water courses, increasing the potential for 

gastrointestinal disease outbreaks [5--7]. Not only do such outbreaks pose a risk to individuals, but they 

can also place a heavy economic burden on society [8, 9]. 

Well-publicised outbreaks can also elicit strong, negative responses from the general public, leading to 

a drop in sales of related produce and a decrease in trust in relation to shops and their suppliers, as well 

as monetary fines. Any association between these opinions, monetary losses and hazards with the 

practice of sewage sludge application to agricultural land could therefore prove to be detrimental to its 

continued use as a fertiliser. Additionally, when considering the large quantities of sewage sludge 

produced annually across the UK (1.4 million tonnes as of 2008) and Europe (10.13 million tonnes) 

[10, 11], the need to dispose of this material in a sustainable manner is paramount to developing and 

maintaining the goal of a more sustainable society. 

Furthermore, the persistence of enteric pathogens in the soil environment can vary significantly. 

Escherichia coli have been shown to persist for 29 days in slurry when applied to arable and grass plots 

[12], 231 days in manure-amended autoclaved/un-autoclaved soil [13], with environmental strains of E. 

coli persisting for upwards of nine years in soil [14]. Similarly, Salmonella species have been shown to 

survive for approximately 200 to 400 days in soil when co-introduced with manure, irrigation water or 

slurry [15, 16]. Additionally, Avery et al. [17] found that E. coli populations originating from livestock 

faeces persisted for approximately 180 days in a grassland pasture where livestock had been penned. It 

is therefore important to elucidate what factors may be of greatest influence. For example, persistence 

can be attributed to variation in nutrient availability and microbial diversity [18, 19].  

It is theorised that the application of sewage sludge to land could lead to a hot spot of activity, where 

there is enhanced activity within the local microbial community triggered by the increased availability 

of carbonaceous substrate and nutrient elements [20, 21]. This hot spot of activity could drive the 

exclusion or greater decline of enteric pathogens when co-introduced with sewage sludge, via greater 

competition for local resources. Moreover, previous work has shown that hot spots of activity after an 

input of assimilable carbon/nutrients can occur in the presence of animal manure, accumulated OM or 

the rhizosphere [22--24]. 

Therefore, this study aimed to assess the persistence of several model/indigenous microorganisms, co-

introduced with sewage sludge, in relation to loading rates of sewage sludge in soil. We hypothesised 

that there was a positive correlation between increased proportions of sludge to soil and the survival of 
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model/indigenous microorganisms. To investigate this, two microcosm-based studies were established, 

using an environmentally-persistent strain of E. coli or model microorganism Salmonella Dublin, 

within microcosms containing varying proportions of soil to sewage sludge. Following this, a further 

microcosm study determined the effects of loading rate of sewage sludge on the persistence of 

indigenous, sewage sludge E. coli in soil. 

  

2. Materials and methods 

2.1. Experiment 1 

Soil A, a loamy, brown earth soil, was collected from a cattle-grazed pasture comprised of white clover 

(Trifolium repens L.) and perennial ryegrass (Lolium perenne L.), located at Teagasc Environment 

Research Centre, Johnstown Castle, Wexford, Ireland (52.3342°N, −6.4575°W) 

(http://met.ie/climate/rainfall.asp; http://met.ie/climate-ireland/surface-temperature.asp). Three top-soil 

samples (0--10 cm) were collected from random points within the pasture, within one month of the 

onset of each experiment. The samples were then sieved to approximately 5 mm and coned/quartered to 

produce a homogeneous composite sample [25]. Sludge A, an anaerobically digested and dewatered 

sewage sludge cake, was provided by United Utilities, Ellesmere Port, UK. The sewage sludge was air-

dried to a fixed moisture content of 60% and pasteurised (70°C) for 24 h to increase friability and 

reduce the concentration of indigenous microorganisms. It was then sieved to approximately 5 mm.  

Soil and sewage sludge composites were assessed, in triplicate, for levels of indigenous 

microorganisms (E. coli and a viable bacterial count). Following a modified protocol by Troxler et al. 

[26], sterile quarter strength Ringer's solution (50 mL) was added to each sample and shaken gently by 

end-over-end rotation (100 rpm) for 30 min and vortexed for 10 s. A tenfold dilution (100 µL sample to 

900 µL sterile quarter strength Ringer's solution) was then made up. A selection of the dilution series 

was then spread plated onto Sorbitol MacConkey and Standard Plate Count Agar, to analyse E. coli and 

viable bacterial cells respectively. The plates were then incubated at 37°C for 24 h. Physico-chemical 

analyses were also performed within one month of collection and are summarised in Table 1 for soil 

and Tables 2 and 3 for sludge, respectively.  

A set of microcosms (sterile 100 mL plastic containers) containing soil and sewage sludge was 

established (Fig. 1). The weights for each treatment were prescribed on a volume to volume ratio, with 

a standardised volume of 16 mL per sample used throughout (Table 4). The microcosms were 

inoculated with an environmentally persistent strain E. coli Lys 9 [27]. Initially, aliquots of the 

environmentally-persistent E. coli were grown for 24 h in Luria-Bertani broth at 37°C on an orbital 

shaker (120 rev min--1). Aliquots of the culture, taken at peak cell propagation, were then transferred to 

another vial containing 50 mL of fresh LB broth and incubated following the same procedure. The 

culture was then centrifuged (4500 rpm) and re-suspended in sterile quarter strength Ringer's solution 

three times. Aliquots (100 µL) of the cell suspension were then inoculated into the containers holding 

sewage sludge. A tenfold dilution series (100 µL of culture to 900 µL sterile quarter strength Ringer's 

solution) was also created from the culture and used to assess absorbency and cell count. The initial 

quantity of environmentally-persistent E. coli added to relevant treatments was approximately 2.3 × 108 

colony -orming units (CFU) mL--1. The un-inoculated soil was then added to the spiked sewage sludge. 
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The resulting microcosms were then gently shaken by end-over-end rotation for 60 s. Where there were 

treatments without sludge, bacteria were added directly to the soil. The two control treatments for soil 

and sludge were inoculated with sterile quarter strength Ringer's solution, allowing for the analysis of 

background levels of microorganisms. The microcosms were then incubated at 10°C. At each time 

point (0, 1, 3, 7, 14, 28, 42 days), one full cohort of treatments (n = 3) was removed and E. coli 

extracted/enumerated as described above.  

 

2.2. Experiment 2 

Experiment 2 was run concurrently alongside Experiment 1 (Section 2.1), using the same matrices (soil 

A and sludge A) and microcosm set-up (Tab. 4, Fig. 1). These matrices were then assessed for 

presumptive Salmonella and Salmonella Dublin (NCTC 9676) substituted as the inoculant. The initial 

quantity of S. Dublin was approximately 1.0 × 109 CFU mL--1. Again, the microcosms were incubated 

at 10°C and removed at the same time points (n = 3). Salmonella Dublin was then extracted and spread 

plated onto xylose-lysine-desoxycholate (XLD) agar, as described above in Section 2.1. 

 

2.3. Experiment 3 

Soil and sludge matrices were sourced from the same locations and analysed using the same protocols 

as outlined in Section 2.1, but are hereafter denoted soil B and sludge B to emphasise that they 

represent different aliquots of these materials. The matrices were then assessed for general coliforms 

and E. coli. The sludge was manually crumbled to an aggregate size of approximately 5 mm to ensure 

homogeneity and its moisture content remained unaltered. Background levels of indigenous sewage 

sludge microorganisms were extracted in triplicate as described in Section 2.1, substituting sterile 

maximum recovery diluent (MRD) (Oxoid) instead of ¼ Ringer’s. Aliquots of each extract were 

diluted, 1 mL extract to 5 mL MRD to aid dispersion, then filtered and enumerated using membrane 

filtration and membrane lactose glucuronide agar (MLGA) [28]. The sewage sludge contained 

approximately 1.1 × 105 g-1 dry solids (DS) indigenous sewage sludge E. coli, sufficient to study 

population decline without the need for additional inoculation. 

One set of microcosms containing soil and sewage sludge was established (Table 5 and Fig. 2). The 

initial cell count was taken from the first reading (day 0) of the control sludge treatment, 1.13 × 105 

CFU g-1 DS. The weights for each treatment were prescribed on a dry weight ratio, with a consistent 

weight of sewage sludge used throughout. This ensured a consistent concentration of indigenous E. 

coli. For mixed treatments, soil and sewage sludge were weighed out separately into sterile 100 mL, 

plastic, screw-cap containers. The soil was then incorporated into the containers holding the sewage 

sludge, through manual end-over-end rotation for 60 s. These microcosms were then incubated at 10°C. 

At each time point (0, 1, 3, 7, 14, 28, 42, 56 days), one full cohort of treatments (n = 3) was removed 

from the incubator. Indigenous sewage sludge E. coli was then extracted as described in Section 2.1, 

using MRD. The extract was then filtered and enumerated using membrane filtration and MLGA. 

 

2.4. Statistical analysis 

A two-way factorial analysis of variance (ANOVA) was implemented to analyse treatment and time 
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effects on microbial survival, using R version 3.2.3 for Windows (http://R-project.org). The Bonferroni 

correction was used to assess means for homogeneity with a significance level of 95%. A one-way 

ANOVA was also performed on the final time point for each experiment and a Tukey multiple 

comparisons of means implemented, to a 95% family-wise confidence level. 

 

3. Results and discussion 

The un-inoculated control soil treatments across all three experiments did not contain detectable 

concentrations of E. coli or Salmonella. There were also no detectable concentrations of Salmonella 

Dublin within the un-inoculated control sludge for the second experiment. They were therefore omitted 

from further statistical analysis and associated figures. Indigenous E. coli within the first experiment 

prevailed in the un-inoculated control sludge indicating that pasteurisation had not eradicated them. 

However, as they were detectable using the agar medium the E. coli count was considered to have 

included both the environmentally-persistent and indigenous E. coli.  

A one-way ANOVA comparing the quantity of environmentally-persistent E. coli between treatments, 

at the final time point (day 42), revealed three homogeneous groupings (Fig. 3). The first group, 

containing 100% sludge and control sludge treatments, maintained the highest levels of E. coli. Whilst 

the E. coli in the second group, which contained 75% sludge, 50% sludge and 100% soil, declined to a 

greater extent. The third group containing only 25% sludge showed the greatest attenuation of E. coli. 

It is also pertinent to note the marked and sustained effect that 25% sludge treatment has on 

attenuation, which became apparent from day 14 onwards (Fig. 3). Similarly, a one-way ANOVA 

comparing the levels of Salmonella Dublin between treatments on day 42 resulted in essentially the 

same groupings of treatments, discounting control sludge (Fig. 4). Here, each treatment declined at a 

similar rate that was more linear than in the previous experiment for environmentally-persistent E. coli 

(Fig. 5). Additionally, a one-way ANOVA comparing the quantity of indigenous sewage sludge E. coli 

between treatments at the final time point (day 56), again showed three homogeneous groups. Here the 

first group contained the control sludge treatment and again maintained the highest concentrations of E. 

coli. The second group, containing 75% sludge, 25% sludge and 15% sludge, showed a slight decline in 

E. coli levels. The third group contained only 50% sludge and showed the greatest attenuation of E. 

coli. There was an apparent sharp decline and subsequent increase in indigenous sewage sludge E. coli 

within the first week. This sharp decline is unusual for microbial propagation patterns and difficult to 

explain. This could have occurred due to the change in temperature conditions the microorganisms 

within the sludge underwent from the outset of the experiment. Prior to the start of the experiment the 

sludge was stored at 4 °C. The experiment itself was maintained at 10 °C. This change could have led 

to a crash and re-establishment of the indigenous sewage sludge E. coli.  

These findings show that the greatest declines for both strains of E. coli and Salmonella Dublin were 

observed within the treatments containing 25–50 % sludge, with soil/sludge mixtures generally 

showing greater declines than in the pure sludge treatments. These ratios could have instigated the 

greatest decline due to a balance of physicochemical and biological factors being reached. For example, 

the quantity of sludge could have been optimal for nutrient provision, whilst the potential toxicity could 

have been minimal due to the lesser quantity added. Additionally, these ratios of sludge to soil may 
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have favoured the soil microbial community potentially leading to more antagonistic interactions with 

the introduced microorganisms. Furthermore, this indicates that the presence of any quantity of soil can 

induce greater attenuation of E. coli or Salmonella Dublin, with greater quantities of soil generally 

instigating greater die-off. However, rather than pure soil treatments initiating greatest die-off, 

treatments containing sludge/soil mixtures showed greater declines. Therefore, the initial hypothesis 

stating that there would be a positive correlation between increased proportions of sludge to soil and 

the survival of model/indigenous microorganisms is accepted, with the qualification that this is in the 

context of some proportion of sludge.  

Furthermore, these findings also indicate that soil and its constituents have some form of detrimental 

effect on the survival of introduced pathogens, but the effects are not directly proportional to the ratio. 

They also suggest that there may be an optimal ratio of sludge to soil that would provide a balance of 

factors which induce greatest attenuation of introduced microbes. For example, Jiang et al. [13] found 

that the greatest ratio of manure to soil, 1:10 manure to soil versus 1:25, 1:50 or 1:100, resulted in a 

greater decline in E. coli O157:H7. It was suggested that such an outcome may have been related to 

antagonistic interactions between the soil microbial community and E. coli O157:H7. Schwarz et al. 

[29] also demonstrated a greater decline in E. coli and S. enterica in anaerobically-digested dewatered 

biosolids applied to soils, in comparison to un-amended soils. They postulated that the greater decline 

in E. coli and S. enterica in amended soils could have been caused by enhanced antagonistic activity of 

the indigenous microbial populations in relation to microbially-available substrate and improved 

moisture content. Additionally, Moynihan et al. [30] monitored the persistence of Salmonella Dublin, 

Listeria monocytogenes, non-toxigenic E. coli O157 and environmentally-persistent E. coli over 110 

days across 12 different soils with contrasting land-management practices. They found that there was a 

wide variety of factors which influenced the survival of Salmonella Dublin, L. monocytogenes and non-

toxigenic E. coli O157, which indicated that whole-scale community interactions played a significant 

part in their survival and were context specific. However, these factors did not appear to affect the 

environmentally-persistent strain of E. coli. As such, it can be postulated that the local microbial 

community within the soil could act as attenuating agents to introduced pathogens, and further argued 

that access to these agents would be important. Hence the intrinsic frequency of contact between these 

two microbial communities and their respective matrices (soil and sludge) would be a factor in the 

attenuation of pathogens.  It follows that a greater proportion of soil/sludge will increase the likelihood 

of such interactions. Therefore there would be a greater possibility for microorganisms to move 

between these matrices, due to shorter path lengths between these phases in the pore network, and 

greater connectivity between pore space, modulated by water content. This shortening of path length 

would arise inevitably from there being a greater concentration of soil and hence average distance 

between soil/sludge particles (or zones). There would also be an increased likelihood of interaction 

between the soil microbial community and the introduced pathogens due to a greater dispersal of both 

throughout the matrices. The nature and extent of such phenomena would also be influenced by the 

degree of mixing of the two phases, which was experimentally controlled here to be consistent between 

treatments.  

Moreover, the influence of soil on persistence was more apparent with the environmentally-persistent 
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E. coli and S. Dublin than the indigenous sewage sludge E. coli, which had a more consistent linear 

decline across all treatments. This may indicate that indigenous strains are more resilient and indicative 

of natural behaviour. Further evidence of this has been shown by Franz et al. [31] who studied the 

persistence of 18 E. coli O157 strains; eight animal, one food and nine human isolates, in manure-

amended sandy soil. They found a high degree of variation in survival across all strains, with human 

isolates generally surviving for significantly greater periods (median 211 days) when compared to 

animal isolates (median 70 days). Alternately, the location of the model and indigenous 

microorganisms within or on the soil/sludge matrices may have influenced these apparent differences 

in attenuation. For instance, the model microorganisms where inoculated onto soil and sludge matrices, 

whilst the indigenous E. coli were already present and established within sludge aggregates. Therefore, 

this potential difference in location could affect the degree of exposure or interaction between such 

microorganisms and the soil microbial community, as well as other physicochemical characteristics. 

 

4. Concluding remarks 

The presence of any quantity of soil induced greater attenuation of introduced microorganisms, with 

greater quantities of soil generally instigating greater die-off. In general, these results indicate that the 

loading rate of sewage sludge in agricultural soils is a significant factor in their persistence. However, 

other factors such as location of microorganisms within the profile, the nature of the introduced 

species, substrate content and mixing between matrices may be of importance. There appears to be no 

optimal ratio of sludge/soil, rather this is content dependent.  
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Table 1. Physicochemical and biological characteristics of soil (Mean ± SEM, n=3). a) 

Analysis Soil A Soil B 

pH (H20) 1:1 6.37 ± 0.11 6.1 ± 0.06 

Total exchange capacity  12.3 ± 0.23 9.34 ± 0.27 
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(mEq 100 g-1) 

Moisture content (%) 31.8 ± 0.3 24.5 ± 0.04 

Organic matter  

(Loss on ignition) % 
6.92 ± 0.18 4.95 ± 0.07 

Bray I phosphorus (P) (mg L-1) 111 ± 0.7 64.3 ± 1.2 

Nitrogen (N) (mg L-1)   

Nitrate (NO3) 49.6 ± 0.51 20.1 ± 1.19 

Ammonium (NH4) 6.07 ± 0.25 1.13 ± 0.09 

Mehlich III extractable (mg L-1)   

Phosphorus (P) 108 ± 0.77 66.7 ± 0.25 

Potassium (K) 228 ± 0.89 96.3 ± 0.67 

Bacterial count (CFU g DS-1)   

Viable bacterial count  4.50 × 104 ± 4.20 × 101 b) 

E. coli O157 2.83 × 102 ± 6.00 × 100 b) 

Presumptive Salmonella 2.33 × 102 ± 7.00 × 100 b) 

E. coli b) 0 ± 0 

General coliforms b) 4.43 × 103 ± 5.70 × 102 
 

a) [32--39]; performed by Brookside Laboratories, New Knoxville, Ohio, US. 

b) Not applicable to given experiment 

 

Table 2. Physicochemical and biological characteristics of sewage sludge (Mean ± SEM, n = 3). a) 

Analysis Sludge A Sludge B 

pH (H20) 1:1 7.54 ± 0.8 7.39 ± 0.17 

Total solids (g kg-1) 247 ± 0.56 245 ± 0.44 

Moisture content (%) 64.8 ± 0.41 74.6 ± 0.04 

Total phosphorus (g kg-1) 203 ± 6.17 5.68 ± 0.06 

Phosphorus as P2O5 (g kg-1) 476 ± 9.43 13 ± 0.09 

Potassium (g kg-1) 22.2 ± 2.04 195 ± 6.12 

Potassium as K2O (g kg-1) 26.8 ± 2.23 0.72 ± 0.04 

Nitrogen (g kg--1)   

Total Kjeldahl 11.3 ± 0.13 9.73 ± 0.16 

Organic 8.96 ± 0.16 9.58 ± 0.16 

Nitrate <0.1 ± 0.0 44.3 ± 2.35 

Ammonia 2.35 ± 0.1 0.16 ± 0.03 

Bacterial Count (CFU g-1 DS)   

Viable bacterial count  7.00 × 105 ± 1.76 × 102 b) 

E. coli O157 5.00 × 103 ± 24 × 101 b) 

Presumptive Salmonella 0 ± 0 b) 
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E. coli b) 6.57 × 105 ± 9.39 × 104 

General coliforms b) 1.13 × 105 ± 2.82 × 104 
 

a) [35, 37, 40--46];  performed by Brookside Laboratories, New Knoxville, Ohio, US. 

b) Not applicable to given experiment 

 

Table 3. Heavy metal elemental composition  of sewage sludge (Mean ± SEM, n = 3). a) 

Analysis 
Fresh weight 

(mg kg--1) 

Dry weight 

(mg kg--1) 

Arsenic (As) 3.12 ± 0.11 13.4 ± 0.16 

Cadmium (Cd) 0.53 ± 0.06 2.28 ± 0.08 

Chromium (Cr) 8.28 ± 0.20 35.4 ± 0.30 

Copper (Cu) 60.7 ± 0.42 259 ± 0.55 

Lead (Pb) 34.0 ± 0.37 145 ± 0.55 

Mercury (Hg) 0.10 ± 0.02 0.45 ± 0.07 

Molybdenum 

(Mo) 
1.42 ± 0.06 5.85 ± 0.18 

Nickel (Ni) 31.1 ± 0.23 133 ± 0.20 

Selenium (Se) 0.55 ± 0.00 2.32 ± 0.06 

Zinc (Zn) 162 ± 0.46 691 ± 0.70 
 

a) [46--49];  performed by Brookside Laboratories, New Knoxville, Ohio, US. 

 

Table 4. Treatment outline (n = 3) based on volume basis (%), with equivalent weight of sewage 

sludge and soil (±0.05 g). 

 Fresh weight (g) 

Content Soil  Sludge  

Un-inoculated soil  24.22 0 

Soil  24.22 0 

25% sludge  18.17 3.56 

50% sludge  12.11 7.12 

75% sludge  6.05 10.68 

Un-inoculated sludge  0 14.24 

Sludge  0 14.24 
 

 

Table 5. Treatment outline (n = 3), with equivalent weight of sewage sludge and soil (±0.02 g). 

 Fresh weight (g) 

Content Soil Sludge 

Soil 1.35 0 

15% sludge 7.63 4.00 
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25% sludge 4.04 4.00 

50% sludge 1.35 4.00 

75% sludge 0.45 4.00 

Sludge 0 4.00 
 

 

Figure legends: 

Figure 1. Treatment outlines for Experiments 1 and 2.  soil;  sludge;  inoculated with E. coli 

or S. Dublin. 

Figure 2. Treatment outline for Experiment 3.  soil;  sludge, with indigenous sewage sludge E. 

coli. 

Figure 3.  Survival of E. coli within soil/sludge microcosms (n = 3).  soil;  25% 

sludge;  50% sludge;  75% sludge;  sludge;  un-inoculated sludge. Pooled 

standard error of log transformed data: 0.15. Letters denote homogeneous means at 5% significance 

level on day 42. 

Figure 4.  Survival of S. Dublin within soil/sludge microcosms (n = 3).  soil;  25% 

sludge;  50% sludge;  75% sludge;  sludge. Pooled standard error of log 

transformed data: 0.11. Letters denote homogeneous means at 5% significance level on day 42. 

Figure 5. Survival of indigenous sewage sludge E. coli soil/sludge microcosms (n = 3).  15% 

sludge;  25% sludge;  50% sludge;   75% sludge;  sludge. Pooled 

standard error of log transformed data: 0.12. Letters denote homogeneous means at 5% significance 

level on day 56. 
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