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RESEARCH ARTICLE

A novel technique for retrospective 
genetic analysis of the response to vaccination 
or infection using cell-free DNA from archived 
sheep serum and plasma
Eve Hanks1,4* , Helen Todd2, Javier Palarea‑Albaladejo3, Tom N. McNeilly2, Collette Britton1* 
and Keith T. Ballingall2*

Abstract 

Genetic variation is associated with differences in disease resistance and susceptibility among individuals within a 
population. To date, molecular genetic analyses of host responses have relied on extraction of genomic DNA from 
whole blood or tissue samples. However, such samples are not routinely collected during large‑scale field studies. 
We demonstrate that cell‑free genomic DNA (cfDNA) may be extracted and amplified from archived plasma samples, 
allowing retrospective analysis of host genetic diversity. This technique was also applicable to archived serum samples 
up to 35 years old and to different ruminant species. As proof of concept, we used this cfDNA approach to genotype 
the major histocompatibility complex (MHC) class II DRB1 locus of 224 Merino sheep which had participated in field 
trials of a commercial Haemonchus contortus vaccine,  Barbervax®, in Australia. This identified a total of 51 different 
DRB1 alleles and their relative frequencies. This is the first study to examine host MHC diversity using DNA extracted 
from archived plasma samples, an approach that may be applied to retrospective analyses of genetic diversity and 
responses to vaccination or infection across different species and populations.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Previous molecular studies of the influence of genetic 
diversity on the response to vaccination or infection have 
relied on the extraction of genomic DNA from blood or 
tissue samples collected during field trials. In the absence 
of such material, retrospective analyses are not easily 
achieved. However recent advances in the field of circu-
lating cell free DNA (cfDNA) as potential biomarkers of 

disease [1, 2] led us to examine whether DNA of sufficient 
quality and quantity could be extracted from archived 
ovine plasma and serum samples for MHC genotyping. 
The re-use of material from previous vaccine trials allows 
implementation of the three Rs; replacement, reduction 
and refinement and, therefore, satisfies animal welfare 
and ethical use of animals in science requirements [3]. 
To demonstrate the utility of the method, we sought to 
determine whether genomic DNA could be obtained 
from archived plasma samples, and tested if alleles of the 
Ovar-MHC class II locus could be amplified from these 
samples. We focussed on the DRB1 locus which is the 
most highly polymorphic MHC class II locus of domestic 
sheep (Ovis aries) [4, 5]. The MHC class II genes encode 
dimeric cell surface glycoproteins that present peptides 
to the adaptive immune system for recognition by CD4+ 
T cell receptors [6, 7]. MHC class II diversity plays an 
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important role in determining the type and intensity of 
the immune response to foreign antigens within a popu-
lation [4].

Previous studies have identified associations between 
MHC diversity and resistance or susceptibility to gastro-
intestinal nematodes (GIN) infection in different sheep 
breeds [8–12]. MHC influence on the response to GIN 
vaccination has not been examined. GIN infection is a 
major clinical and economic problem in humans and 
livestock and a key constraint to small ruminant produc-
tivity globally [13]. Current control relies on administra-
tion of anthelmintic drugs, however parasite resistance 
to the commonly used anthelmintics (benzimidazole, 
levamisole and avermectin classes) is widespread, with 
multidrug resistance having considerable impact in some 
areas [14]. The blood-feeding nematode Haemonchus 
contortus is the most pathogenic GIN of sheep and goats 
and the predominant species in warm climates, includ-
ing large parts of Australia and South America [15, 16]. 
 Barbervax®, the first vaccine commercialised for a GIN 
of any host, was launched in Australia in 2014 [17] and in 
South Africa in 2016 [18] after being developed in Scot-
land, UK. Vaccination is highly effective under controlled 
challenge conditions [> 70% reduction in worm burden 
and > 90% reduction in faecal egg count (FEC)] [19–21]. 
However under field challenge during vaccine trials, 
there was considerable variation between vaccinated 
individuals in their level of protection, as measured by 
faecal egg count, blood haemoglobin concentration and 
anti-Barbervax® antibody titre [22].

In this retrospective analysis, we made use of archived 
plasma from Australian vaccine field trials to demonstrate 
the applicability of our novel PCR approach in detail-
ing ovine MHC genotypes. While this study focussed 
on the MHC class II DRB1 locus, the novel approach we 
describe using archived serum or plasma is equally appli-
cable to retrospective studies of genetic diversity at other 
loci and to other infections or vaccinations.

Materials and methods
Plasma samples
Plasma samples were collected during 2011–2013 from 
Australian Merino sheep during nine  Barbervax® regis-
tration trials carried out by two companies; CSIRO and 
VHR, in New South Wales, Australia (Table  1). These 
studies were designed to test vaccine efficacy. Blood was 
obtained by jugular venepuncture using sodium heparin 
tubes and plasma separated at room temperature and 
stored at −20 °C. Sheep varied in age from 2 months to 
2.5  years and included lambs, yearlings and ewes. The 
Australian  Barbervax® trials obtained ethical approval 
from the Australian Animal Ethics Committee for each 
trial and animals were handled in compliance with AEC 
and any applicable local regulations.

Serum was obtained from Texel cross sheep from a 
2014  Barbervax® trial at the Moredun Research Insti-
tute (MRI), with ethical approval from MRI Experiments 
and Ethics Committee (MRI E46 11) and were conducted 
under approved UK Home Office licence (PPL 60/03899) 
in accordance with the 1986 Animals (Scientific Pro-
cedures) Act. Ovine serum collected between 1984 
and 2004 and archived bovine and caprine serum were 
obtained from MRI archives.

Barbervax® vaccination schedules
Merino lambs were vaccinated subcutaneously five times 
during the grazing season over spring and summer, and 
yearlings and ewes given four doses of vaccine at 3–6 
weekly intervals. Blood was sampled from all sheep on 
vaccination days or at fortnightly intervals for anti-Bar-
bervax® Ab titre measured by ELISA, as described pre-
viously [23]. Sheep were organised by trial location, year 
and age, as shown in Table 1, and totalled 9 separate tri-
als from 2011 to 2013. In each trial 20–40 animals were 
vaccinated with  Barbervax® from which 224 sheep were 
genotyped.

Table 1 Details of trials for Australian Merino sheep genotyped for this study

Company Site Year of trial Number of sheep genotyped Age of sheep

CSIRO Armidale, New South Wales 2011 4 Lambs

CSIRO Armidale, New South Wales 2012 30 Lambs

CSIRO New South Wales 2012 27 Yearlings

CSIRO New South Wales 2013 20 Ewes

VHR Armidale, New South Wales 2012 36 Lambs

VHR Dundee, New South Wales 2012 28 Yearlings

VHR Kingston, New South Wales 2012 25 Yearlings

VHR Dundee, New South Wales 2013 24 Ewes

VHR Kingston, New South Wales 2013 30 Ewes
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Preparation of genomic DNA
Genomic DNA (gDNA) was prepared in the UK, from 
archived plasma samples using the Qiagen DNeasy Blood 
& Tissue kit (Qiagen UK, 69504), with the only modifi-
cation to the standard procedure being the use of serum 
or plasma instead of blood or tissue. The following was 
added to a 1.5  mL Eppendorf tube: 100  µL serum or 
plasma, 100  µL PBS, 20  µL Proteinase K and 200  µL of 
buffer AL. The protocol provided with the kit was then 
followed. Eluted DNA (50 µL) was quantified using Nan-
odrop spectrophotometry (ThermoFisher Scientific). 
This indicated a typical concentration of 5–15  ng/µL, 
therefore a yield of 250–750 ng gDNA per 100 µL plasma 
was obtained. There was no obvious difference in yield of 
gDNA using serum or plasma.

PCR amplification of the ovine MHC class II DRB1 locus
Oligonucleotide PCR primers targeting the 5′ and 3′ 
intronic regions flanking, or partially overlapping the 
highly polymorphic second exon of the Ovar-DRB1 gene 
were utilised. Primers are listed in Table 2 and their loca-
tions relative to the second exon of the DRB1 gene are 
shown diagrammatically in Additional file  1. The prim-
ers had previously been designed to amplify DRB1 exon 
2 using DNA from whole blood [6], with the exception of 
nested primers 455 and KBEH1 which were new to this 
study. Different primer combinations were used in nested 
or hemi-nested PCR reactions to optimise amplification 
of the second exon using the DNA isolated from plasma. 
Primers 275 and 329 were used in the first round PCR 
then 455 and 329 in the second round or, if no amplifi-
cation was achieved, an alternative combination of PCR 
primers, 330 and 329 in the first round and 455 and 329 
in the second round were used. The combination of prim-
ers 455 and 329 in the first round and primers KBEH1 
and 329 in the second round improved the amplification 
of both alleles in animals initially typed as homozygous 
and this primer combination was used to validate all 
homozygous animals.

Nested and hemi-nested PCR was conducted in 50 µL 
reactions consisting of 200  nM of each primer, 1  Unit 

OneTaq polymerase (New England BioLabs, M0480S) 
and corresponding buffer and 2–4 µL (20–40 ng) of puri-
fied gDNA as template. Two microliters of first round 
PCR product was used as template in a second round 
of PCR. First round PCR cycling conditions were: 94  °C 
for 2  min, followed by 15–20 cycles at 94  °C for 30  s, 
58–60 °C for 30 s, and 72 °C for 30 s, with a final exten-
sion at 72 °C for 4 min. The second round used the same 
cycling conditions, but for 30 cycles. PCR products were 
analysed by electrophoresis on 1% agarose gels and sent 
directly for purification and sequencing or sequenced 
following gel excision and purification using the Wizard 
SV Gel and PCR Clean-Up System (Promega, A9281). 
All PCR products were sequenced in both directions by 
Eurofins Genetic Services (Germany), using terminal 
primers.

Cloning of Ovar‑DRB1 PCR products
Alleles that proved difficult to annotate from direct 
sequencing of the PCR product were cloned into the 
pGEM-T-easy vector (Promega, A1360) and transformed 
into E. coli JM109 cells, applying blue/white selection 
with IPTG (isopropyl β-d-1-thiogalatopyranoside, Merck 
367-93-1) and X-gal (5-bromo-4-chloro-3-indolyl β-d-
galactopyranoside, ThermoFisher Scientific B1690). 
Twelve colonies per PCR product were PCR screened for 
the correct insert using primers 455 and 329. Individual 
clones representing both alleles were identified by diges-
tion of the colony PCR product with 5 U of the frequent 
cutting restriction enzyme RsaI (ThermoFisher Scientific, 
ER1121) at 37 °C for 1 h [6]. RsaI was inactivated at 80 °C 
and digested PCR products (15 µL) were separated on an 
8% polyacrylamide gel. DNA from a minimum of three 
clones representing both alleles, as indicated by the RsaI 
digest pattern, was sequenced in both directions.

Ovar‑DRB1 sequence analysis
Sequences were analysed using the SeqMan Pro 14 pro-
gram within the DNASTAR software package. Contigs 
were assembled from the forward and reverse DNA 
sequences from each plasma sample. Heterozygous 

Table 2 Oligonucleotide primers used for amplification of the second exon of the Ovar-DRB1 locus. Adapted from [6]

Intron 1 sequence is indicated as negative, intron 2 sequence is indicated as positive. Positions 1 to 270 indicate exon 2. The intron exon boundary is marked by /.

Primer name Position relative to the first base of the second 
exon of the Ovar‑DRB1 locus

Forward (F) or reverse (R) Sequence

275 Intron 1 (−55 to −35) F ATT AGC CTC TCC CCA GGA GTC 

329 Exon 2/intron 2 (263 to +15) R CAC CCC CGC GCT CAC/CTC GCC GC

330 Intron 1 (−55 to −35) F ATT AGC CTC YCC CCA GGA GKC

455 Intron 1/exon 2 (−16 to +8) F TAT CCC GTC TCT GCAG/CAC ATT TC

KBEH1 Intron 1/exon 2 (−7 to +14) F TCT GCA G/CAC ATT TCY TGG AG
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positions were manually labelled according to the Inter-
national Union of Biochemistry (IUB) ambiguity code 
(Nomenclature Committee of the International Union of 
Biochemistry, 1984). Each sequence was searched against 
a database of all known Ovar-DRB1 alleles downloaded 
from the immunopolymorphism database (IPD)-MHC 
database [5, 7, 24] using a Basic Local Alignment Search 
Tool (BLAST). The two alleles providing the highest 
alignment scores were then manually checked to ensure 
a perfect match.

Results
Amplification of MHC class II DRB1 alleles from archived 
plasma from Merino sheep
The second exon of the ovine MHC class II DRB1 locus 
was successfully amplified by hemi-nested PCR from 
DNA template extracted from archived plasma samples 
from Merino sheep. The samples had been collected 
during 2011–2013 Australian Barbervax field trials and 
stored at −20  °C prior to DNA extraction. From a total 
of 257 samples initially tested by PCR, products were 
obtained from 224 Merino samples (87%). This demon-
strated that DNA of sufficient quantity and quality can be 
extracted from most archived plasma samples for ampli-
fication of the DRB1 locus.

Sequence analysis of ovine DRB1 alleles
Two hundred and twenty-four DNA samples provided 
sequence of a quality that allowed identification of one 
or both alleles directly from the PCR product. Within 
this, thirty-two sequences obtained from these 224 sam-
ples (7%) were of insufficient quality to determine allele 
type directly. This was resolved by cloning the PCR prod-
ucts from these samples into the pGEM-T-Easy vector 
and sequencing the cloned products (see “Materials and 
methods”).

All alleles identified in this study were present within 
the IPD-MHC Database [24]. In total, 51 alleles were 
identified. Of the 224 sheep genotyped at the DRB1 locus, 
14 (frequency of 0.063) were homozygous. This value is 
similar to previous reports across a range of sheep breeds 
(0.075) [6]. The 7 most frequently occurring alleles are 
listed in Table  3 and the remaining 44 alleles identified 
and their frequencies are shown in Additional file 2.

Application to other breeds, species and samples 
of different ages
Additionally, sera from seven Texel cross sheep, from a 
2014  Barbervax® trial at the Moredun Research Insti-
tute (MRI), UK, were PCR amplified and sequenced. This 
demonstrated that the technique can be applied across 
different breeds (representative PCR data shown in Addi-
tional file 3). To test application of the approach to older 

samples and to different species, we also included three 
ovine serum samples from the MRI archive from 1984, 
three from 1994 and three from 2004. In addition, we 
tested amplification using three bovine and three caprine 
serum samples provided by the Virus Surveillance Unit 
at MRI. All samples produced PCR products of the 
expected size.

Discussion
MHC genotype can impact on host responses to para-
sitic disease by influencing the range of antigenic pep-
tides presented for recognition by the adaptive immune 
system. Numerous studies have shown the relevance of 
MHC diversity on resistance or susceptibility to infection 
with nematode parasites in many species including mice 
[25, 26], sheep [8–12] and cattle [27]. However, MHC 
genotyping has relied on the availability of cell or tis-
sue samples for DNA extraction. Here we report for the 
first time that plasma or serum may be employed as an 
appropriate source of genomic DNA for sequence based 
analysis of MHC allelic diversity. Our high success rate 
of amplification and sequencing shows that the yield and 
quality of DNA obtained from archived plasma or serum 
samples is sufficient for detailed, retrospective analysis 
of MHC diversity in population based studies. Using this 
approach we were able to genotype the MHC DRB1 locus 
of 224 sheep and differentiate between homozygous 
and heterozygous animals. The method we developed is 
relevant to future monitoring of genetic influences on 
vaccine efficacy, disease susceptibility and to selective 
breeding. Additionally, it opens up the opportunity to 
include targeted DNA sequence analysis retrospectively 
to studies that have relied on phenotypic data alone. The 
approach is also amenable to high throughout sequenc-
ing of pooled amplicons from of large numbers of sam-
ples using molecular barcodes incorporated into each 
primer.

The source of DNA present in the serum or plasma 
samples is currently unknown. It seems unlikely to be 

Table 3 Relative frequency of  the  seven most abundant 
Ovar-DRB1 alleles in Merino sheep

Allele name Total Relative 
frequency

04:01 21 0.050

07:01 37 0.088

08:03 48 0.114

15:02 46 0.109

17:02 20 0.048

19:02 28 0.067

20:02 29 0.069
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derived from lysed white blood cells as the samples 
showed no evidence of cell lysis and the amount of 
DNA extracted was consistent across all samples. The 
most likely source is cfDNA. cfDNA was first discov-
ered in 1948 in human plasma [28] and is now known 
to be released by a variety of cells into the circulation 
[29]. It has been shown that tissue damage such as car-
diomyocyte death [30], inflammatory processes such as 
venous thromboembolism [31] and potentially para-
sitic infections [32], may all be characterised by detec-
tion of cfDNA. This technique is non-invasive, apart 
from the initial blood sampling, and the use of cfDNA 
for biomarker discovery is rapidly increasing, particu-
larly for diagnosis, monitoring and prognosis of specific 
cancers; a “liquid biopsy” [33]. Furthermore, cfDNA 
may be biologically active and has been shown to have 
immunoregulatory effects in macrophages in vitro [34].

Here, to demonstrate application of the technique, 
we focused on amplification of the highly polymorphic 
second exon of the MHC class II DRB1 gene in sheep, 
the major region encoding the peptide-antigen binding 
site [35]. However, this approach is equally applicable 
to other loci that may influence or be used as markers 
of response to vaccination or infection. Having estab-
lished the technique, it will be important to determine 
its wider applicability to disease monitoring, diagnos-
tics and selective breeding. We successfully amplified 
and sequenced the DRB1 locus from 87% (224/257) 
of plasma samples from Australian field trials of the 
 Barbervax® vaccine. No novel DRB1 alleles were iden-
tified, which is both a testament to the comprehensive 
nature of the IPD-MHC database and the reliability 
of the approach. Contamination is a potential pitfall 
associated with all PCR amplification techniques. We 
had no evidence of contamination and no disparity in 
the number of homozygous animals in comparison to 
similar studies using DNA extracted from whole blood 
(“Sequence analysis of ovine DRB1 alleles” section) 
and no evidence that one or two alleles dominated the 
findings.

Optimisation of the PCR procedure by employing dif-
ferent combinations of primers allowed reliable identi-
fication of animals homozygous or heterozygous at the 
DRB1 locus. Homozygosity was represented by only a 
small number of sheep (14). Current theory suggests that 
the evolution and maintenance of MHC diversity is likely 
to be driven by interaction with rapidly evolving patho-
gens and that heterozygosity offers some advantage in 
protection against infection [10, 36, 37]. It is worth not-
ing that homozygosity at the DRB1 locus does not mean 
that the animal is always homozygous across the MHC 
class II region. The ovine MHC class II region includes 
a range of polymorphic DQ loci [38] and a number of 

studies have identified diversity at the duplicated DQA 
and DQB loci linked with identical DRB1 alleles [4].

A total of 224 Merino sheep were successfully geno-
typed at the DRB1 locus. Fifty-one alleles were identified 
at relative frequencies ranging from 0.114 to 0.002; the 
level of heterozygosity supports the concept that all avail-
able alleles were amplified. The same PCR primer com-
binations amplified DRB1 from DNA isolated from the 
serum of Texel cross sheep and from bovine and caprine 
serum, demonstrating the wide applicability of the tech-
nique, although primer optimisation may be required for 
each species. In previous studies, the primer combina-
tions employed in this study successfully amplified DRB1 
from genomic DNA obtained from whole blood samples 
from a range of sheep breeds [6] and from goats [39, 40]. 
In this study, amplification of the Ovar-DRB1 locus failed 
in 33 samples. This is most likely due to degradation of 
the DNA following storage and freeze/thaw cycles rather 
than a failure to amplify certain alleles.

No specific DRB1 alleles have previously been associ-
ated with resistance to H. contortus infection although 
microsatellite [10] and single nucleotide polymorphisms 
within Ovar-DRB1 have been identified in resistant and 
susceptible sheep from St. Croix, Katahdin and Dorper 
breeds [12]. One DRB1 allele (11:01) has been associated 
in Suffolk sheep with lower worm burdens and higher 
mast cell and plasma platelet counts following infection 
with the GIN Teladorsagia circumcincta [36] and with 
reduced faecal egg count in Texel breed sheep [41]. In 
future vaccine studies, where more comprehensive infor-
mation is available, such as animal pedigree, formal sta-
tistical generalised linear mixed modelling (GLMM) may 
be applied to determine any associations between MHC 
genotype and vaccine efficacy, to better understand host 
protective responses to vaccination and infection.

In summary, this is the first report of DNA extraction 
and amplification from plasma or sera for retrospective 
use in genetic analysis of the outcome of a vaccine field 
trial. Moreover, we routinely extracted good quality DNA 
from samples stored for many years, demonstrating a 
new route to accessing genetic information from archived 
samples that can be widely applied to examine the effects 
of MHC and other genes on the outcome of parasitic 
infections. While this study focussed on the MHC class II 
DRB1 locus, the approach is equally applicable to retro-
spective studies of genetic diversity at other loci.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1356 7‑020‑0737‑9.

Additional file 1. Diagram of Ovar‑DRB1 Exon 2 region showing the 
position of each primer used in PCR genotyping. 
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Additional file 2. Low frequency Ovar‑DRB1 alleles sequenced from 
Merino sheep. 

Additional file 3. Specific PCR amplification of Ovar‑DRB‑1 exon 2 
using hemi‑nested PCR. Agarose gel electrophoresis of PCR products 
of DNA from plasma of seven Merinos lambs (1–7). Negative control PCR 
(N, no template DNA) showed no amplified product. Mr indicates 100 bp 
DNA ladder.
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