Food Waste and Food Safety Linkages along the Supply Chain
Toma, L; Revoredo-Giha, C; Costa-Font, M; Thompson, B

Published in:
EuroChoices

DOI:
10.1111/1746-692X.12254

Print publication: 29/05/2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Food Waste and Food Safety Linkages along the Supply Chain

Luiza Toma, Cesar Revoredo-Giha, Montserrat Costa-Font and Bethan Thompson

Reducing food loss and waste (FLW) results in economic, socio-ethical and environmental improvements and delivers into a majority of the United Nations’ Sustainable Development Goals (SDGs). The most documented FLW aspects relate to the resulting environmental footprint. The Food and Agriculture Organisation’s well-known statement highlights the significance of FLW: ‘if food wastage were a country, it would be the third largest [GHGs] emitting country in the world’ (FAO, 2015). The direct economic cost of FLW (agricultural products excluding fish and seafood) has been estimated as equivalent to Switzerland’s GDP (FAO, 2013). The socio-ethical dimension of FLW is typically referred to in the context of nutrition. It is seen as a missed opportunity to improve food security, where unequal access to food in less developed parts of the world accentuates the moral implications of food wasted in higher income countries. The literature provides worrying FLW estimates, portraying a predominantly inefficient use of resources within agri-food chains and at national and global levels.

FLW may be caused by a myriad of interrelated socio-economic and environmental factors between the different stages of the agri-food chain; and therefore with cumulative impacts (HLPE, 2014). Among the key factors, food safety issues, whether actual or perceived, often have a direct relationship with FLW. In the remainder of this paper, we concentrate on food safety related causes of FLW. The focus is on the dairy sector where food safety issues have a relatively high impact, with some references to the case of fruit and vegetables.

Rapid technological developments to improve food safety have enabled accurate assessment of quality beyond subjective means such as appearance, aroma and taste. These changes have been prompted by a range of factors: ongoing concerns about the need to protect consumers from hazards to food safety; changing food supply patterns serving an increasingly affluent and sophisticated demand; scientific evidence of the linkages between diet and health; and the continuously evolving regulatory framework. From the passing of effective laws against food adulteration during the mid-19th century to the present day, food legislation has focussed on setting the minimum food safety standards acceptable to society.

Food losses and safety at farm and processing levels

Many of the causes of food losses in primary production are related to food safety concerns. Dairy farmers, for example, may dispose of milk deemed unfit for human consumption due to unacceptably high concentrations of antibiotic residues after treatment for animal diseases such as mastitis. However, in some cases this milk will remain in the food chain as farmers may redistribute it for animal consumption, for example by feeding it to calves. This may still have food safety implications as antimicrobial residues in milk fed to calves may be partly the cause of the high prevalence of Escherichia coli bacteria reported in dairy calves (Brunton et al., 2012). Antimicrobials used in the rearing of food producing animals account for two thirds of the total use of antimicrobials in the European Union.

Food losses on farm may also occur in order to avoid transmission into the human food chain of zoonotic diseases through products such as milk and raw meat. The UK legislative framework for
Food loss and waste represent the decrease in quantity or quality of food along the food supply chain, where food losses occur from harvest/slaughter/catch up to, but not including, the retail level, while food waste occurs at the retail and consumption levels (FAO, 2019). Zoonoses control, implemented in food safety, public health, and health and safety at work regulations, involves largely effective control measures at slaughter and processing levels; however, an increase in infection control measures on-farm is recommended. Complementary to regulation, farmers’ uptake of preventative (e.g. biosecurity) and control (e.g. vaccination, medication) measures to mitigate zoonotic diseases on-farm can impact the safety of the whole supply chain (Toma et al., 2015); and subsequently the amount of food losses on livestock farms and beyond the farmgate.

In the fruit and vegetable sector a number of factors can lead to high losses pre-farmgate, for example where retailers reject fruits and vegetables affected by pest-induced diseases. In some cases produce may be safe for human consumption, for example where only inedible parts such as swede skin are affected. Thus many losses occur due to perceived rather than actual food safety issues, or simply for cosmetic concerns (Beausang et al., 2017).

Figure 1 illustrates the linkages between food safety and FLW at farm level and beyond farmgate in the dairy supply chain. Monitoring of food safety along the chain is regulated through risk-based monitoring programmes and quality control programmes (e.g. Hazard Analysis Critical Control Points - HACCP). However, food safety hazards can still occur, for example, via mycotoxins present in EU imports of feed or through suboptimal livestock disease control on farm (Asselt et al., 2016), which may lead to FLW.

Food waste and safety at retail level

The current food waste regulatory agendas in the EU and the UK are pushing strongly towards improved food labelling with the aim of reducing food waste at retail and consumption levels. Current EU labelling requirements for food products (Regulation (EU) No. 1169/2011) specify the mandatory food information to be included in all food labels; including the date of minimum durability (‘best before’ date), and the ‘use by’ date. Most pre-packed food requires the ‘best before’ date. The ‘use-by’ date is required only for food products with potential microbiological hazards. Organisations such as WRAP (Waste & Resources Action Programme) have proposed new guidance on the application of date labels, including flexible implementation of the ‘best before’ date while maintaining strict food safety principles (WRAP, 2017).

The elimination of date labels such as ‘sell-by’ and ‘display-until’ that retailers may use for stock control purposes is under discussion. Increasing product shelf life without compromising food safety would offer retailers an opportunity to manage product flows more efficiently. Current food safety regulations at retail level have a direct impact on food waste: for instance, in redistributing surplus food that would otherwise have ended up as waste; while recycling food waste from caterers or supermarkets can raise difficult regulatory issues, particularly with regard to responsibility for the safety of foods of animal origins. There is scope for improving the balance between food safety regulatory control and waste mitigation.

Strict norms for acceptable levels of food contamination, such as maximum allowable limits for residue levels for pesticides and veterinary medicines, in addition to hygiene rules concerning the packaging and storage of food are seen as key drivers promoting the discarding of edible food in the retail and hospitality sectors. Priefer et al. (2016) propose a review of the current regime of food safety regulations in order to identify provisions that are not mandatory to protect human health, but lead to unnecessary food waste.

Figure 1: The relationship between food safety and FLW along the dairy supply chain (based on Asselt et al., 2016)
Food waste and safety at consumption level

While environmental concerns may tend to lead people to reduce food waste, food safety concerns may lead them to do just the opposite. Public discourse on food safety and food waste prevention can give rise to conflicting motivations at consumer level (Watson and Meah, 2013). This particularly relates to labelling and consumers’ understanding and use of ‘best before’ date labels (referring to food quality issues rather than food safety ones) and ‘use by’ date labels (referring to food safety, i.e. the date a food product shall be deemed unsafe).

A number of authors argue that the current food date labelling system is a barrier to the management of both food waste and food safety issues (Priefert et al., 2016). Simplifying and clarifying expiry date labelling could be one of the most cost-effective ways to reduce food waste. Consumers tend not to trust their ability to assess the edibility of food and may instead rely on date labelling. Moreover, even when their understanding of, for example, best-before dates is correct, consumers may still

Technological or regulatory initiatives to reduce waste that target both food and food packaging, may have conflicting implications for food waste and safety unless properly synchronised. For example, *The Grocer* (Quinn, 2020) recently reported an increase in the level of food waste in the UK retail sector partly caused by efforts to reduce plastic packaging, which subsequently led to temporarily higher vegetable waste and additional operational costs for readjustment.

Similarly, asymmetrical efforts to mitigate waste in some parts of the supply chain may just shift the problem elsewhere. For instance, retail initiatives relaxing specifications on fresh produce to help reduce waste in primary production through e.g. misshapen fruit and vegetables led to an increase in waste in retailer depots and stores (Quinn, 2020); this was not immediately corrected through food redistribution to charities and/or differential retail price for these products.

The current food waste regulatory agendas in the EU and the UK are pushing strongly towards improved food labelling with the aim of reducing food waste at retail and consumption levels.
perceive a safety risk after this date has passed (Thompson et al., 2018). Other waste factors at consumption level relate to the understanding of storage-related labelling; when inadequately followed, food quality may reduce to unsafe levels and be thrown out.

Household food waste can also occur due to perceived, not actual, food safety issues. For example, food marketing and retailer communication on quality characteristics may have amplified safety concerns beyond the real needs of some relatively risk-averse consumers. Studies have identified consumers who waste edible foods because of exaggerated safety concerns (Watson and Meah, 2013). This indicates the need for improved access to knowledge and tailored education campaigns to reach different segments of the population (Toma et al., 2017).

Direct associations between food waste and food safety at consumption level have been observed consistently at different stages of economic development (Figure 2). Both exhibit a direct positive relationship with income per capita up to a turning point characterised by optimal food safety and the most unacceptably high level of waste. In contrast, actual food safety would remain at the optimal level. Following higher trust in and access to better information and allowing scientific evidence to trump precautionary behaviour, perceived safety would gradually equal actual levels, and thus contribute to waste reduction. The ratio between perceived and actual safety will show a decreasing trend with the shape of the curve dependent on the strength of influencing factors and the specific food products (for illustration purposes, we assume a similar shape to the one taken by the waste curve).

Policy implications of food waste and safety linkages

This article highlights the need for a number of measures to ameliorate the impact of food safety on FLW through harmonisation of the various FLW and safety related aspects of food policies and food regulations.

1. Better coordination between food waste and safety policies regarding labelling regulations through greater balance between scientific evidence and the precautionary principle.

 Simplifying and clarifying expiry date labelling could be one of the most cost-effective ways to reduce food waste.

2. Provision of clear tailored information to consumers to help them differentiate between different types of food safety hazards and increase awareness of the linkages between food safety and waste.

3. Better coordination between animal health and food safety.
Dairy farmers may dispose of milk deemed unfit for human consumption due to unacceptably high concentrations of antibiotic residues after treatment for animal diseases such as mastitis.

policies, potentially leading to further reductions in the use of antimicrobials in the rearing of food producing animals, with the corresponding safety and waste implications. This could be facilitated by provision of clear information on the effectiveness of alternative disease control options for farmers to help further improve animal health performance and reduce antibiotic use on farms.

4. Investment in technologies for accurate assessment of food edibility at retail and consumption level.

5. Synchronised monitoring of safety hazards and FLW along the agri-food chain.

6. Better provision of information on the safety of mechanisms in place for redistribution of food surpluses; and improved regulation of food redistribution processes to reduce actual and perceived safety risks.

Acknowledgments

This research was funded by the Scottish Government Rural Affairs and the Environment Portfolio Strategic Research Programme 2016-2021 Theme ‘Food, Health and Wellbeing’ (WP3.1), RD3.1.4 Preventing food waste.

Further Reading

Summary

Food Waste and Food Safety Linkages along the Supply Chain

Food safety, whether actual or perceived, is one of the major reasons for food waste along the agri-food supply chain. Food safety hazards at farm level such as mycotoxin contamination of feed, overuse of antimicrobials in livestock disease control, and zoonotic disease incursion may lead to food unfit for human consumption and thus waste. Given the importance of safety as one of the most important attributes of food, the appropriate management of risks along the supply chain can contribute to reductions in food loss and waste. However, a better coordination between food waste and safety policies is also needed, which requires: balancing the scientific evidence and the precautionary principle; reviewing current food safety regulations to identify areas potentially leading to avoidable waste; combining the monitoring of safety hazards and waste along the agri-food chain; provision of tailored information on linkages between food safety and waste; and investment in technologies to accurately assess the edibility of food. Attention needs to be paid to policies and practices on food labelling and packaging to ensure that they do not lead to unintended or unnecessary impacts on food safety and waste, which are not justified by scientific evidence.

La sécurité des aliments, qu’elle soit réelle ou perçue, est l’une des principales causes du gaspillage alimentaire le long de la chaîne d’approvisionnement agroalimentaire. Les dangers pour la sécurité sanitaire des aliments au niveau de l’exploitation, tels que la contamination des aliments pour animaux par les mycotoxines, la surutilisation des antimicrobiens dans la lutte contre les maladies du bétail et l’apparition de zoonoses peuvent rendre les aliments impropre à la consommation humaine, et donc entrainer leur gaspillage. Etant donné l’importance de la sécurité sanitaire, qui représente l’un des attributs les plus importants des aliments, une gestion appropriée des risques tout au long de la chaîne d’approvisionnement peut contribuer à réduire les pertes et le gaspillage alimentaires. Cependant, une meilleure coordination entre les politiques visant le gaspillage alimentaire et les politiques de sécurité sanitaire est également nécessaire, ce qui nécessite: un équilibre entre les preuves scientifiques et le principe de précaution; revoir les réglementations actuelles en matière de sécurité sanitaire des aliments pour identifier les domaines permettant d’éviter le gaspillage; combiner la surveillance des risques pour la sécurité et des gaspillages tout au long de la chaîne agroalimentaire; la fourniture d’informations personnalisées sur les liens entre la sécurité sanitaire des aliments et le gaspillage; et l’investissement dans les technologies permettant d’évaluer avec précision la comestibilité des aliments. Il convient de prêter attention aux politiques et pratiques en matière d’étiquetage et d’emballage des aliments pour garantir qu’elles n’entraînent pas de conséquences involontaires ou inutiles sur la sécurité sanitaire des aliments et le gaspillage, qui ne sont pas justifiés par des preuves scientifiques.