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ABSTRACT
Synthetic pigments from petrochemicals have been extensively used in a wide range of food products.
However, these pigments have adverse effects on human health that has rendered it obligatory to the
scientific community in order to explore for much safer, natural, and eco-friendly pigments. In this
regard, exploiting the potential of agri-food wastes presumes importance, extracted mainly by
employing green processing and extraction technologies. Of late, pigments market size is growing rap-
idly owing to their extensive uses. Hence, there is a need for sustainable production of pigments from
renewable bioresources. Valorization of vegetal wastes (fruits and vegetables) and their by-products
(e.g. peels, seeds or pomace) can meet the demands of natural pigment production at the industrial
levels for potential food, pharmaceuticals, and cosmeceuticals applications. These wastes/by-products
are a rich source of natural pigments such as: anthocyanins, betalains, carotenoids, and chlorophylls. It
is envisaged that these natural pigments can contribute significantly to the development of functional
foods as well as impart rich biotherapeutic potential. With a sustainability approach, we have critically
reviewed vital research information and developments made on natural pigments from vegetal
wastes, greener extraction and processing technologies, encapsulation techniques and potential bioac-
tivities. Designed with an eco-friendly approach, it is expected that this review will benefit not only the
concerned industries but also be of use to health-conscious consumers.

GRAPHICAL ABSTRACT
Schematic representation of vegetal waste utilization for the exploitation of the pigments and
their functional properties.

HIGHLIGHTS

� Valorization of vegetal wastes and by-products to produce natural pigments
� Recent developments in green-extraction techniques for the isolation of natural pigments
� Encapsulation of pigments from vegetal wastes
� Natural pigments impart rich health benefits.
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Introduction

Historically, natural pigments or colorants used in food
applications were obtained from renewable resources
such as from plants or from microbes (e.g. bacteria,
algae, fungi, and yeasts) and insects. Extracts of: saffron,
paprika, turmeric, and various flowers are some exam-
ples from which natural pigments were traditionally
derived [1]. With wide profound applications, synthetic
pigments gained popularity as one of the main food
coloring (pigments) compounds. These synthetic com-
pounds have been related with high stability, low pro-
duction costs, and high tinctorial strength as well as
ease of application in the food system. Edible pigments
are ubiquitously present in plant origin foods, especially
in colored fruits and vegetables (Table 1). Nature pro-
vides a wide array of colors to fruits and vegetables,
and thus is a pigment enriched food resource. These
pigments occur mainly as secondary plant metabolites
in fruits and vegetables and are usually coined as nat-
ural pigments. Nowadays, an increasing trend has been
witnessed wherein consumers are more concerned
about the diet pattern they consume and their
health impact.

Owing to consumers demand, considerable innova-
tive research has been undertaken to explore for nat-
ural and safe food ingredients such as natural pigments
with potential health benefits (Table 1) [2–53]. This has
rendered it a necessity to find alternatives for chemical-
based pigments [54]. Researchers are continually look-
ing for natural food coloring alternatives to meet the
market challenges and demands, and those which can
fulfill and meet regulatory restrictions for food and bio-
therapeutics applications.

The food processing industry produces enormous
amount of waste and by-products, and these form the
second-largest generator of wastes after household
sewage wastes [55]. Processing waste generation is
continuously increasing with increased industrialization
and urbanization. Fruit and vegetable wastes and/or
by-products obtained from the processing industries
mainly contains the skin portion or the peel, seeds, and
pomace. These are excellent resources for ingredients
such as protein, peptides, polysaccharides, dietary
fibers, and others along with bioactive-functional ingre-
dients such as polyphenols, antioxidants and antimicro-
bial compounds including natural pigments [56].
Among all of these, pigments are considered to be nat-
ural, safe, and possess potential antioxidant activities,
as well as can be a potential coloring material source in
food applications [57]. These natural pigments, with
coloring and pharmacological properties, have wide
applications in the food industry and can be utilized in

product development (functional and nutraceutical
foods) because of their health-related beneficial effects
[58]. On the other hand, due to the shortage of pilot
testing of the innovative technologies, the exploitation
of the vegetal wastes for pigment extraction has been
highly limited [55]. Various innovative techniques, such
as pulsed-electric field, pulse-light, high pressure proc-
essing, ionizing radiation have been explored for the
extraction of new potential food colorants from vegetal
wastes [59]. The wastes contain significant amounts of
phyto-pigments which can help in overcoming cardio-
vascular, cerebrovascular, and certain types of cancers
[60]. These natural pigments can be isolated from
wastes and by-products and can possess potential bio-
activities such as antimicrobial, antioxidant, antiprolifer-
ative, anti-inflammatory properties, etc. [60]. Due to
significant nutritional and beneficial health properties,
as well as phyto-pigment-antioxidant nature, these
plants secondary metabolites can be considered as
‘functional food ingredients’.

In this review, the focus is on the major types of nat-
ural pigments in vegetal wastes, effective utilization of
vegetal wastes for extraction of natural pigments, and
encapsulation technologies to enhance the stability of
natural pigments, as well as their applications during
the development of novel functional foods. From a bio-
technological viewpoint, recent developments on the
utilization of vegetal wastes for the exploitation of nat-
ural pigments as bioactives in a sustainable manner is
also highlighted.

Designed with an eco-friendly environmental con-
cern based approach and keeping in mind circular
economy concepts, it is expected that this review will
benefit not only the dependent industries but also be
of use to health-conscious consumers.

Natural pigments – types and sources

Pigments are classified as either natural or synthetic,
water and/or fat-soluble, organic or inorganic types.
Further, they are also classified based on their structural
affinities, solubility and natural occurrence. The classifi-
cation of natural pigments primarily extracted from
vegetal wastes are specified in the Figure 1. Most often,
these are mainly divided into 04 major groups: antho-
cyanins, betalains, carotenoids and chlorophyll (see
Table 1) [61].

Anthocyanins

Anthocyanins are natural, water-soluble, nontoxic, vacu-
olar and the largest group of polyphenolic pigments.
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These are, known to be nearly 700 distinctive structures
of anthocyanins [62]. Among vegetables- red cabbage,
black carrot, red radish, purple sweet potatos and
amongst fruits- blackcurrants, cherries, and berries (e.g.
strawberries, elderberries, blackberries, chokeberries,
black raspberries, blueberries, black goji berries, con-
cord grapes etc.) have been identified as rich sources of
anthocyanins. Anthocyanins belong to the class of fla-
vonoids with the major plant-based anthocyanins
being: cyanidin, pelargonidin, delphinidin, peonidin,
petunidin and malvidin. The color difference in antho-
cyanins is due to the structural differences in hydroxyl
groups, their number and the position of sugar moi-
eties [9].

Wastes and by-products from food processing indus-
tries, like wine or the juice industry, are considered to
be additional enriched sources for anthocyanin pig-
ments, which can be exploited as natural colorants for
various food applications [55]. Juice processing indus-
tries inevitably produce waste and by-products.
Blackberry residues are reported to be important sour-
ces of natural colorants and nutraceuticals due to the
presence of high anthocyanin contents (4.31 mg

Cy3GlE/g) [6]. Apple peel can also be a good source of
this valuable pigment. The anthocyanin content of
Rome beauty apple peels was reported to be 169.7 mg
cyanindin 3-glucoside equivalent/100g of dried peel
powder [2]. Grape pomace is a well-known source of
polyphenolic compounds including: anthocyanins, pro-
anthocyanidins, trans-resveratrol and quercetin [63].
Barros et al. [18], extracted anthocyanins (3.4 mg/g raw
material) from freeze-dried jaboticaba peel powder by
using an hydroalcoholic mixture (50 v/v), of three differ-
ent acids (formic acid- 88%, acetic acid- 99.7%, and
ortho-phosphoric acid- 85%) at three pH ranges (1.0,
2.0 and 3.0), followed by an ultrasonic bath (frequency-
40 kHz and power- 150 W).

Betalains

Betalains are next to anthocyanins in terms of their nat-
urally occurring pigments and are mainly divided as
betacyanins and betaxanthins. These pigments impart
red-purple and yellow-orange colors to fruits and vege-
tables, respectively [64]. These compounds are com-
monly found as a pigment in Beta vulgaris(beetroot), in

Natural Pigments

Chlorophylls
(Green)

Cyanidin

Carotenoids
(Yellow-

orange-red)

Anthocyanins 
(Red-blue-

purple)

Betalains
(Red)

Water soluble Lipid soluble

Malvidin

Delphinidin

Peonidin

Betacyanin

Betaxanthin

Lycopene

� --carotene

� --carotene Lutein

Petunidin

Pelargonidin

Chlorophylls-b

Chlorophylls-aCarotenes Xanthophylls

Zeaxanthin

� -cryptoxanthin

Figure 1. Classification of natural pigments extracted from vegetal wastes.
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some fruits like Opuntia (prickly pears), Hylocereusand
Mamillaria species [65]. Betalains are immonium conju-
gates of betalamic acid with cyclo-dopa and amino
groups (amino acids, amines or their derivatives) [61].
The betalamic acid moieties conjugated with amino
acids or amines, are termed betaxanthins.
Condensation reactions between the betalamic acid
and cyclo-dopa producing betanidin is a precursor of
the betacyanins. Due to the presence of glycosylation
or acylation, betanidins exhibit 29 different structures in
nature. Betanins have also undergone several chemical
reactions (isomerization, deglycosylation, hydrolysis,
decarboxylation, and dehydrogenation) [66], but no
reported study specifies the number of isomers or deg-
radation products of betanins.

Several studies have been carried out on the extrac-
tion of betalains from vegetal wastes [25–33].
Kushwaha et al. [67] optimized an ecofriendly method
for the extraction of betalains from beetroot pomace
by changing different experimental variables such as
the solid to liquid ratio, time, temperature and pH.
Results showed the yield of betacyanin and betaxanthin
to range from 1.75–62 and 1.79–61.62 mg/L, respect-
ively. Similarly, the water extract of red dragon fruit
(Hylocereus polyrhizus) peels were observed to have a
betalain content of 30.18 mg/100 g of dry peel [26].
Further, microwave assisted extraction of betalains
(9 mg/L of betalain content) from dried peel powder of
dragon fruits has also been optimized [68]. Melgar et al.
[69] extracted betalains from peels of Opuntia engel-
mannii using ultrasound and microwave-assisted extrac-
tion and reported betalain content to be 201.6 and
132.9 mg/g, with and without methanol, respectively.

Carotenoids

Among natural pigments, carotenoids are the most vital
phytochemicals which are lipophilic in nature account-
ing for the red, yellow or orange color range in a variety
of fruits and vegetables. Carotenoids widely occur as
all-trans and cis-isomers forms [70]. Carotenoids are
mainly categorized into two: carotenes (a-carotene,
b-carotene and lycopene); and xanthophylls (lutein,
zeaxanthin, and b-cryptoxanthin). Both carotenes and
xanthophylls contain chains of hydrogen and carbon,
but the presence of hydroxyl groups which represent
oxygenated carotenoids in structure, to differentiate
them [71]. Paprika is one of the rich sources of red caro-
tenoids [50]. The capsanthin pigment is found in the
fruits of Capsicum annuum(paprika) or Capsicum frutes-
cens(piri piri). As per EU food legislation, capsanthin is
listed as a natural food colorant (E160c), however, in

USA legislation, oleoresin of paprika is permitted as a
food colorant [72]. Commercially available carotenoids
used as food coloring compounds are usually synthe-
sized chemically [73]. However, currently, to boost
green consumerism, these pigments can be produced
from wastes generated by the fruit and vegetable proc-
essing industry. For example, paprika waste, (lutein-
232.60 l g/g) [50], tomato peel (carotenoids-253.5 l g/g)
[47], carrot peel [42] and their by-products (carotenoids-
82.66 l g/g) [74]. Further, in spinach by-products, lutein
recovery is reported to be 70% and chlorophyll recov-
ery 96% [48]). Vegetal wastes are rich sources of natural
carotenes exhibiting provitamin-A activity. In addition,
seeds of Bixa Orellana(achiote), a source of annatto
(natural pigment), has been used to color dairy formula-
tions. However, there are no reports available on the
natural pigments obtained from wastes or by-products
of this plant, which should be explored in the
near future.

Several studies have been reported on the extraction
of carotenoids from vegetal wastes [34–39]. Recently,
Tiwari et al. [74] extracted carotenoids from carrot pom-
ace using a green extraction approach (flaxseed oil as
green solvent) in combination with innovative extrac-
tions (ultrasonication, high shear dispersion) techni-
ques. They concluded that the biorefinery approach is
helpful to improve the extraction of carotenoids
(82.66 l g/g) and b-carotene (78.37 l g/g) from carrot
pomace. Goula et al. [39] adopted green extraction
methods (sunflower oil and soy oil as green solvents) in
combination with ultrasound for the extraction of caro-
tenoids from pomegranate peels (0.6134 and 0.6715 mg
carotenoids/100 g of dry peels in sunflower oil and soy
oil, respectively). Kang et al. [50] optimized the method
for lutein extraction by accelerated solvent extraction
using response surface methodology from paprika
leaves waste. These researchers reported the lutein con-
tent of paprika leaves extracted in ethanol to be
232.60 l g/g of the leaves. Kehili et al. [45] extracted
lycopene and b-carotene from tomato by-products
using supercritical CO2 extraction and reported the
recovery range to be 32 to 61% for lycopene and 28.38
to 58.8% for b-carotene. Similarly, Wang [46] extracted
b-carotene (18.50 mg/100 g sample) from pumpkin
seeds using supercritical CO2 extraction. On the other
note, de Andrade et al. [47] considered on carotenoids
recovery (by supercritical fluid extraction) from various
vegetal wastes. They reported on waste from the peel
of the sweet potato, tomato, apricot, pumpkin and
peach peels and pepper wastes (165.1, 253.5, 285.1,
142.0, 59.5, and 109.2 l g/g dry weight basis, respect-
ively). Recently, ionic liquids in combination with
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ultrasonic-assisted extraction have been introduced for
the extraction of carotenoids from the orange peel [75].

Chlorophyll

Chlorophylls is an oil-soluble, amphiphilic green pig-
ment which is extensively dispersed in plants [76].
Chlorophyll molecules constitute a hydrophilic (porphy-
rin) group head and a lipophilic hydrocarbon tail (phy-
tol group). Similar to lutein, due to its lipophilic
hydrocarbon chains as phytol tail, it is generally consid-
ered insoluble in polar solvents [77]. Chlorophyll, found
in plant foods are of two types: chlorophyll a and
chlorophyll b. At position 7-carbon, methyl group
(-CH3) it is present in chlorophyll a whereas an aldehyde
group (-CHO) is present in chlorophyll b. The difference
in the structure leads to different colors of chlorophylls:
blue-green (chlorophyll a) or yellow-green (chlorophyll
b) [78]. Chlorophyll is well recognized, natural, green
permitted food colorant (EU standard number is E140)
[79]. According to the US legislation for natural food
colorants published in Title 21 CFR 73, only copper
chlorophyllin (water soluble) is authorized as a natural
green food-colorant (CFR Section 73.125) [80]. Demand
for chlorophyll is continuously increasing, correspond-
ing to enhanced awareness on the use of natural colo-
rants as well as health benefits imparted by them.

Chlorophylls are used for coloring food formulations
and can be extracted from many types of vegetal
wastes. However, there are no reports on the utilization
of vegetal wastes for the extraction of chlorophylls and
their further application as a colorant in food formula-
tions. Limited available studies have explained the col-
oring attributes of chlorophyll. Considering the
extraction of chlorophyll as an antioxidant, Zeyada
et al. [43] have analyzed methanolic extracts of cucum-
ber and watermelon peels for their chlorophyll content
using HPLC and have recorded the content to be 3.46
and 5.28 mg/g (d.w.) respectively. They reported that
except for the tomato peel, cucumber and watermelon
peels exhibit the highest antioxidant activity among all
the tested vegetable varieties, which was attributed to
a high chlorophyll content. According to the study of
Wang et al. [81] results obtained from eight varieties of
avocado (Persea americana) peel and indicated them to
be a good source of green pigment (Chlorophyll) (range
of 25 to 66 l g/g) . Hence, avocado, being a rich source
of green chlorophyll pigment, can be a platform to for-
tify or use as a coloring agent in various food formula-
tions. Derrien et al. [48,49] optimized the extraction
methods for lutein and chlorophyll from spinach
(Spinacia oleracea) by-products with supercritical CO2

[48] and green solvent extraction [49] using response
surface methodology. Under optimum conditions, they
reported the extraction yield for lutein and chlorophyll
to be 72% lutein and 50% of chlorophyll [48], whereas,
70% for lutein and 96% for chlorophyll were recorded
using green solvent extraction [49].

According to these authors’ knowledge, there are no
studies available which is practically based on the valor-
ization of vegetal wastes for chlorophyll extraction.
Hence, this review discusses avenues for future exploit-
ation of the vegetal wastes in order to obtain natural
green pigments. The addition of these green pigments
valorized from vegetal wastes, in food formulations,
synergizes the coloring attributes with an antioxidant
potential which mainly favors the green consumerism
and limits the application of synthetic coloring com-
pounds in food.

Extraction techniques

Extraction of pigments involves the production of nat-
ural pigments for food applications. For the extraction
of natural colorants, the first step is to obtain the crude
pigment from the plant resources. Usually, conventional
methods such as Soxhlet extraction techniques using
organic/inorganic solvents, maceration or hydro-distilla-
tion have been widely used for natural pigment extrac-
tion [82]. For conventional extraction, generally water
or diluted alcohol are employed for water-soluble pig-
ments, while non-polar solvents are used for the extrac-
tion of lipophilic pigments [83]. The non-polar solvents
used for the extraction of pigments are mainly of petro-
chemical origin e.g. hexane (carotenoids from Gac fruit
peel [37]), acetone (lycopene from tomato pulp waste
[84]), methanol (anthocyanins from eggplant peel [5]),
trifluroacetic acid (betalains from pitaya fruits peel [85]).
Most of them are mainly toxic in nature, though owing
to their volatile nature, they can efficiently dissolve tar-
get pigments to facilitate convenient removal. Rather
than being technically advantageous, traces of these
solvents are unsafe for human consumption and will
lead to carcinogenic risks in humans and can also con-
tribute to environmental pollution [82].

Concurrently, traditional or conventional extraction
methods have been escorted with assisted extractions
techniques impregnated with other physical methods.
Moreover, conventional extraction techniques that have
shown a low extraction proficiency, are complex, and
require a longer extraction time and huge capital
investments. With these drawbacks, environmentally
friendly innovative techniques are needed to allow safe
extraction by using green solvents obtained from
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natural resources like plant based edible oils, wood etc.
The use of greener extraction techniques is now consid-
ered to be an emerging, re-discovered and innovative
method gaining much importance aimed toward avoid-
ing the adverse effects of synthetic solvents.
Nevertheless, these green extraction modes can also
improve the extraction efficiency of natural pigments
from vegetal sources.

Green extraction techniques

Many studies have been undertaken on the extraction
of natural pigments by using synthetic solvents, but in
this section, the focus is mainly on green technologies.
Table 2 summarizes the greener extraction techniques
that assist with various innovative techniques such as:
ultra-sound-assisted extraction (UAE), microwave-
assisted extraction (MAE), enzyme-assisted extraction
(EAE), supercritical fluid extraction (SFE), pressurized
liquid extraction (PLE), and pulse-electric field-assisted
extraction (PEF) employed for the extraction of natural
pigments from vegetal wastes and by-products [86–96].
Greener extraction techniques involve solvents such as:
ionic liquids (ILs), water, ethanol, esters of fatty acid or
oils of fruits and vegetables (soybean, rapeseed oil,

cocoa oils etc.), glycerol etc. which are all gaining
importance for the extraction methods for natural pig-
ments. Many researchers are employing green solvents
and other organic methods for the extraction of natural
pigments [97]. Non-polar solvents used for the green
extractions of lipophilic pigments having GRAS status
incuding cyclopentyl methyl ether (CPME), 2-methyl
tetrahydrofuran (MeTHF), dimethyl carbonate (DMC),
ethyl lactate, ethyl acetate, a-pinene, D-limonene and
plant based essential oils [98]. One more opportunity
can be the use of a multi-stage extraction techniques
which can be timely assisted by different physico-chem-
ical approaches which may selectively target the
desired pigments.

In Figure 2 some of the innovative extraction techni-
ques/strategies viz., UAE, MAE, SFE, PLE, PEF, and ILs
which are proposed as substitutes to the conventional
methods is depicted. These techniques are in demand
due to their several advantages like the requirement for
minimal solvents, are fast, convenient, can increase the
extraction yield, protect pigments from degradation,
enhance the quality of natural colorants, and are eco-
friendly than conventional extraction techniques [99].

The toxicity of solvents used during extraction has
encouraged the advancement of greener techniques

Figure 2. Different extraction methods recommended/commonly employed for extraction of natural pigments from vege-
tal wastes.
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and materials to extract bioactive compounds from
vegetal wastes and by-products. Moreover, termed as
cold extraction methodologies, these methods maintain
the natural composition and stability of extracted com-
pounds while requiring lower energy, less number of
process steps, a reduction in setup size, better mass
and heat transfer and higher yield [100–101].

Yamashita et al. [10] developed an easy and cost-
effective method by using less toxic extractants for the
extraction of anthocyanins from blackberry by-products.
Frozen blackberry pulp by-products were extracted
with water (1:3 ratio, respectively) for anthocyanins, and
concentrated in a rotatory evaporator at 60 �C. The
aqueous and concentrated extracts had a higher antho-
cyanin content (718 and 389 mg cyanindin3-glucoside/
100g of d.w.). Derrien et al. [49], utilized green extrac-
tion technique assisted with supercritical CO2 (SC-CO2)
extraction using 93% ethanol for the extraction of
chlorophyll and lutein from spinach by-products/wastes
and confirmed higher recovery of phytopigments (70%
for lutein and 96% for chlorophylls) when compared
with conventional extraction using acetone.

Parra-Campos & Ord�o~nez-Santos [12], extracted
anthocyanins from coffee exocarp and observed the
highest content of anthocyanins (0.145 mg cyd 3-gluco-
side/g) obtained with 60% ethanol used as an extract-
ing medium and with a 25% solid solvent ratio. Monrad
et al. [11] contemplated the extraction of anthocyanins
from red grape pomace by utilizing expeller techniques.
These authors have recorded an increase in the yield of
anthocyanins (68 and 41% for crude and dried sample,
respectively). In a study by Drosou et al. [24] three dif-
ferent extraction methods (Soxhlet, MAE and UAE)
along with solvent extraction (ethanol, water and their
mixture-1:1), were employed to extract anthocyanins
from the pomace of ‘Agiorgitico’ red grapes. Results of
this study indicated highest procyanidins (43469 ppm)
and anthocyanin contents (34188 ppm) in UAE- assisted
techniques with solvents in combination (water: etha-
nol) compared to all treatments. Vuli�c et al. [31]
extracted betalains from the peel and pomace of beet-
roots by using a mixture of water and ethanol (1:1)
acidified with acetic acid (0.5%) and assisted with ultra-
sonic extraction (50–60 Hz, 22 �C, 125 W, 30 min). They
reported three major betalains from beetroot peel
waste: betanin (3.8 to 7.5 mg/g), isobetanin (1.2 to
3.1 mg/g) and vulgaxanthin (1.4 to 4.3 mg/g). Beetroot
pomace extract showed significant amounts of betanin
(37.22 mg/100g) (all on dry weight basis). Recently,
Goula et al. [39] have developed a new process for the
extraction of carotenoids from pomegranate peel waste
by utilizing UAE assisted extraction with vegetable oils

(sunflower and soybean oils) as a green solvent. They
reported pomegranate peels to be an enriched source
of carotenoids (0.6134 and 0.6715 mg carotenoids/100 g
of dry peels with sunflower oil and soy oil, respectively).
Working with tomato wastes, Strati et al. [102] utilized
pressurized liquid extraction (PLE) assisted with ethanol
at a pressure about 700 MPa/10 min, and reported a
higher content of total carotenoids (9.30 mg/kg d.w.)
and lycopene (7.04 mg/kg d.w.) as compared to conven-
tional extraction (total carotenoids- 3.63 mg/kg dw,
lycopene- 2.47 mg/kg dw). Corrales et al. [17] compared
a pulsed electric field (PEF) assisted extraction with two
other extraction techniques (ultrasonics and high
hydrostatic pressure, HHP) for anthocyanins extraction
from grape by-products. They observed an improve-
ment in extraction efficiency (10% and 17%) in PEF
technique compared to HHP and conventional solvent
extraction. Results showed increased antioxidant activ-
ity; about four-fold in PEF, three-fold in HHP and two-
fold in with ultrasonic treated samples when compared
to conventional solvent extraction techniques (70 �C for
1 h). In another study, Kehili et al. [45] explored SC-CO2

techniques assisted with solvent extraction techniques
and using three solvents (hexane, ethanol and ethyl
acetate), for the extraction of lycopene and b-carotene
from tomato peel. Extraction with SC-CO2 yielded lyco-
pene about 728.98 mg/kg dry basis under suitable proc-
essing conditions (pressure- 400 bar, CO2� 4 g/min at
80 �C). In contrast, extraction with solvents (hexane,
ethanol and ethyl acetate) were recorded to have a
lower lycopene content (608, 284 and 320 mg/kg dry
basis, respectively). Enzyme-assisted extraction (cellu-
lase and pectinase), assisted with ethyl lactate, resulted
in an increase in the yield of carotenoids (six-fold) and
lycopene (ten-fold) was reported for tomato waste
when compared with non-enzyme treated samples
[102]. This study suggested that the use of commer-
cially cheaper food-grade enzymes have huge potential
to be explored on a pilot scale for the extraction phyto-
pigments from agri-food wastes and by-products.

Recently, ionic liquids (ILs) have been used on vari-
ous raw materials to obtain bioactive compounds, caro-
tenoids being one such example [103]. Martins and
Rosso [86], reported the use of IL [BMIM][PF6] (1-butyl-
3-methylimidazolium hexafluorophosphate) and
[BMIM][Cl] (1-butyl-3-methylimidazolium chloride) to
extract lycopene from tomato waste and reported
higher amounts (5.56 l g/g) of lycopene as compared to
acetone (3.65 l g/g). Murador et al. [75], demonstrated a
novel method to extract carotenoid from orange peel,
using four different ILs ([BMIM][PF6], [BMIM][Cl],
1-hexyl-3-methylimidazolium chloride ([HMIM][Cl]) and
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1-n-butyl-3-methylimidazolium tetrafluoroborate
([BMIM][BF4])), assisted by ultrasound. [BMIM][Cl] was
determined to be the most effective at extracting the
carotenoid (32.08 l g/g), while acetone could only
extract 7.88 l g/g of dry matter.

Some of the available innovative techniques along
with organic solvents again cause an ill-impact on
health even though in minimal quantity. Studies are
ongoing with continuous efforts made to search new
economical methods suitable for the extraction of all
the pigments with improved quality following extrac-
tion. More research activities need to be undertaken
aimed toward avoiding the use of synthetic colorants in
foods to reduce the impact of synthetic colorants on
the human body.

Considerable research works is lacking in the area of
green technologies assisted with innovative technolo-
gies for the extraction of natural pigments on an indus-
trial scale. There is a need to analyze the extraction
costs for different phytopigments extracted from vari-
ous green extraction methods and to identify the most
feasible technique which can be best suitable for all the
applications on an industrial scale.

Encapsulation of natural pigments

Stability is one of the vital aspects to be considered for
the utilization of natural pigments as colorants and
antioxidants in food formulations. The strength and sta-
bility of natural pigments are affected by several factors
during processing and storage. Natural pigments
extracted from plant resources or agri-food wastes are
highly unstable and are susceptible to degradation by
external (processing conditions such as temperature
and pH) as well as internal factors (e.g. concentration of
pigment). The naturally occurring pigments are inclined
to degrade easily in aqueous and lipophilic solutions
[104]. The stability of these pigments can be increased
by various concentrations in the system; low pH and
temperature; presence of stabilizers (e.g. chelating
agents, antioxidants); absence of light and the presence
of acylation or glycosylation in the structure. In this
way, micro or nanoencapsulation represents a promis-
ing concept and a best-suited technique for the entrap-
ment of natural pigments in a coating enclosure to
enhance their shelf-life [105]. This is a technique which
entraps the natural pigments using biopolymers to pro-
tect them from various processing and environmental
hazards such as: moisture, oxygen, temperature, light,
etc. This further improves their stability and ensures
easier handling by changing them from liquid to pow-
der forms [106]. The potential of encapsulation

techniques aimed to preserve the natural pigments
extracted from vegetal wastes is are summarized in
Table 3 [107–115]. Several studies have reported on the
use of micro/nanoencapsulation techniques such as
spray drying [108–114], freeze-drying [6,10,14,19,21,23,
108,109,112,113], electrospinning-nanofibers [34] or
complex coacervation- microsphere [52] for the encap-
sulation of natural pigments. Spray drying is the best
technique for the encapsulation of natural colorants
because of it is a minimal exertion, rapid, and a reliable
modern technique. During spray drying, the free-flow-
ing ability, quality, powder efficiency, and bio-activity of
natural pigments after drying treatment depends on
the processing conditions such as temperature, atom-
ization speed, feed rate, and carrier to feed ratio [116].
Microencapsulation represents a promising application
to the modern-day food industry by encapsulating
unstable natural pigments which can help in enhancing
the stability while maintaining their color during proc-
essing conditions. Microencapsulated powders
obtained from natural pigments extracted from wastes
or by-products can be utilized in the formulation of sev-
eral types of functional foods and beverages such as:
confectionery, chocolates, jellies, sauces, ice-creams,
candies, juices and instant drink powders to color the
food commodities and enrich the health-promot-
ing potential.

Bioactivities and health benefits

Food industries are using pigments as color intensifiers,
additives as well as antioxidants. There is a need to
explore various vegetal waste resources to obtain food-
grade pigments with bioactive potentials. This is mainly
due to consumers’ awareness on health and numerous
benefits delivered by these compounds (see Table 1,
Figure 3). These pigments possess various biological
roles in the protection of human health, like anti-inflam-
matory (utilizing cytokines signaling) [117], antioxidant
(utilizing free radical scavenging pathway) [118], anti-
cancer properties, antimicrobial, cardioprotective and
antithrombotic (utilizing mitogen-activated protein kin-
ase pathway), improving ocular and neural health and
the prevention of non-communicable diseases (utilizing
cyclo-oxygenase pathway) [25,119].

Antioxidant activity

The majority of the wastes and by-products have been
reported to be a rich source of bioactive antioxidant
compounds. These antioxidant rich compounds have
been mainly isolated from berries (e.g. ribes,
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chokeberries, blueberries, blackberries and raspberries).
Nutritional properties of these waste materials have
turned them into promising sources of functional com-
pounds. Usually, the waste discarded from fruits and
vegetables contains high amounts of antioxidant com-
pounds [120]. Anthocyanins, flavonoids, vitamin E, C,
phenolic compounds, fibers, carotenoids, and other
antioxidants are the key bioactive compounds present
in these waste materials, thus making them valuable
sources of these compounds. These compounds can
thus be extracted to be reused as functional food ingre-
dients in other food products and supplements to pro-
vide much required antioxidants and to provide
health benefits.

Seed pomace waste of both raspberry and black-
berry can be a good source antioxidants. Besides con-
taining omega-3 (a-linolenic) and omega-6 (linoleic)
(ratio 1: 2–4), these oils can be a potential source of bio-
active compounds such as: phenols, tocopherols, caro-
tenoids and sterols, which are recognized antioxidant
agents. The presence of these antioxidants in the oil
extracted from raspberry and blackberry seed pomace
have elevated the usage of these seemingly waste
products [121]. Many health-promoting compounds
can also be extracted from leaves as well. Cranberry
leaves and pomace have been shown to contain more
polyphenols resulting in the elevated antioxidant prop-
erties when compared with fruits, thus making them an
alternative source to extract these beneficial com-
pounds [122]. Orange peel has a lower antioxidant
potential than flesh wastes. Though both extracts have
been shown to be effective in protecting against hydro-
gen peroxide free radicals, induced DNA damage on
human leukocytes [123]. Further, in a recent study on
pomegranate extract, the presence of ellagic acid is

reported to show antioxidant properties [124]. It has
also been reported that the presence of natural antioxi-
dant additives in the wastes of tomato and potato ren-
ders them to be an excellent protective agent aimed to
preserve vegetable oils (by reducing the oxidation of
oils) [125].

Anti-cancer activity

Natural plant based pigments have been well estab-
lished to be a potential anti-cancer agent. N�u~nez Selles
et al. [126] have explored the application of mangiferin
– a naturally occurring bioactive xanthonoid extracted
from the mango tree for cancer treatment. Besides
being a good antioxidant and anti-inflammatory agent,
Mangiferin,when used either individually or in conjunc-
tion with other anti-cancer chemicals, is potentially
beneficial in treating lung, brain, cervix, prostate and
breast cancers, and leukemia. On the other note, berry
extracts have been proven to exhibit anti-tumour prop-
erties due to the presence of polyphenols, ellagitannins
and anthocyanins [127]. Black raspberry seed wastes
can cause apoptosis in colon cancer cells (HT-29) result-
ing in suppressed cellular spread [128]. In freeze dried
apple wastes, the inhibitory effects of non-extractable
antioxidants was more pronounced than the extract-
able antioxidants on human cancer cells (viz. HepG2,
HeLa, and HT-29) [129]. It has been proved that ellagi-
tannins extracted from pomegranate are useful in pros-
tate LNCaP and breast MCF-7 cancer cell growth [130].
Production waste of tomato juice exhibited anti-cancer
properties via superoxide and hydroxyl anion radicals,
which inhibited tumorous cell growth of MCF7, HeLa,
and MRC-5 [131]. Betalains extracted from beetroot
pomace have been shown to be responsible for their

Figure 3. Natural pigments from vegetal wastes and their proved bioactivities.
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potent antioxidative and anticancer properties, which
exhibited significant proliferative effects in human cell
lines- MCF7 and MRC-5 [132].

Anti-inflammatory

Various phytochemicals including those of natural pig-
ments from fruits and vegetables have gained the
attention as therapeutic agents, which has been proved
to reduce inflammation. Besides, they are recom-
mended to be used as analgesics and anti-inflammatory
agents in food and pharmaceutical preparations.
Pectinolytic preparations were used to extract poly-
phenolic compounds and anthocyanins to study the
potential anti-inflammatory activities of enzymatically
treated raspberry pomace [133]. These researchers
found that anthocyanins thus obtained were able to
inhibit lipoxygenase and cyclooxygenase 2 activities,
resulting in the anti-inflammatory properties. Multiple
studies have conclusively found that citrus pectin can
regulate inflammatory response by affecting immune
cells. In-vitro and in-vivo studies have found citrus pec-
tin to induce endotoxin, causing alleviation of inflam-
matory sensations [134]. Another phytochemical,
limonin (a triterpenoid) has been extracted from citrus
waste [134]. Limonin can act as an anti-inflammatory,
anti-bacterial, antioxidant and anti-cancer agent [135].
Huynh et al. [136] found cauliflower by-products, when
subjected to solid state fermentation (using filamentous
fungi) to produce significant amounts of phenolic com-
pounds which increased the extractability of kaemp-
ferol glucosidase Kaempferol is a natural flavonoid that
exhibits anti-carcinogenic and anti-inflammatory effects
[137]. A key usage of peel extracts is its role as an
inhibitor toward nitric oxide (an inflammation mediator)
and cytokines TNF-a, which could be explained by a
decrease in free radicals during inflammation [138].

Anti-microbial activity

Antimicrobial activity of fruit extracts (mainly of peel) is
likely to be caused by the presence of colored pigments
(anthocyanins, carotenoids, etc) which exhibits multiple
antimicrobial mechanisms and synergies inside a micro-
bial cell. Avocado peel extracts exhibited elevated anti-
microbial potential than nisin, a naturally occurring
dipeptide with antimicrobial properties. Additionally,
avocado peel extracts also exhibited antimicrobial prop-
erties against Listeria innocua (L. innocua), Escherichia
coli (E. coli), Leuconostoc mesenteroides, Weissella virides-
censand Lactobacillus sakei. When it is combined with
39% nisin peel extracts it displayed the highest

antimicrobial impact on L. innocua[139]. In general, the
antibacterial impact of peel extract was not only signifi-
cant against Gram-positive bacteria, but also on E. coli
[140]. Kosi�nska et al. [141] described that the polyphe-
nol and tannin content of avocado seed extract had an
antimicrobial effect on Staphylococcus epidermidis,
Listeria monocytogenesand Mycobacterium avium, thus
concluding that urinary tract infections could be pre-
vented by the tannins present in avocado seed extracts
[141]. Kapadia et al. [142] brought forward the anti-
microbial effects of banana peels extracts on
Aggregatibacter actinomycetemcomitans and
Porphyromonas gingivalis. By-products from grape proc-
essing have been used to extract products that can
serve as antimicrobial agents and natural antioxidants
in fruit juices and meat products [143]. For instance,
grape seed oil has been proven to have antimicrobial
properties, as demonstrated by Garavaglia et al. [144],
along with other health benefits. Beetroot pomace has
been used in many functional supplements and foods
due to its antimicrobial impact [67]. By-products of
cauliflower were evaluated for their antimicrobial
impact on L. monocytogenes. The results of this study
demonstrated its antimicrobial effects rendering it to
be an important source to create biobased preserva-
tives for ready-to-eat refrigerated foods [145].

Anti-obesity activity

The natural phytopigments (mainly anthocyanins and
carotenoids) are envisaged to play a significant role in
lessening obesity contributing toward a decrease in adi-
pose tissue (fat deposition). Various components and
extracts from mango wastes have exhibited anti-oxida-
tive and anti-inflammatory properties and at the same
time have shown promising results at reducing obesity
and diabetes in humans and animals. They have also
proven to be good at: neuroprotection, managing
intestinal health, prevention of skin cancers and cardio-
vascular diseases (constructive impact on the micro-
biota of gut) [146]. Alam et al. [147] demonstrated the
anti-obesity effects of hydroxycinnamic acid derived
from the Mavolanate-Shikimate biosynthesis pathways
in plants. Betanine extracted from beetroot waste can
serve as an excellent alternative route to prevent cancer
and other disorders such as: Alzheimer’s disease, dia-
betes, and obesity [148]. Gao et al. [149] observed the
impact of betanine intake on a large general popula-
tion, and found direct correlation between betaine con-
sumption and better body composition. Devalaraja
et al. [150] reported persimmon (Diospyros kakiL.) fruit
peel extract to contain bioactive proanthocyanidins
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which exhibited anti-diabetic and anti-obesity effects.
Apple pomace was also found to be rich in Phlorizin
and Phloretein which suppressed obesity [151].

Neuroprotective activity

The extracts rich in natural pigments have been proved
to exhibit higher neuroprotective activity than polyphe-
nols. The bioactivity of banana peel extract has been
found to deliver strong neuroprotective effects, among
other advantages, such as: antioxidant, antibacterial,
antifungal and others [152]. D-Psicose is another prod-
uct extracted from fruit and vegetable wastes that have
been found to exhibit multiple physiological advan-
tages such as lower glycemic levels, suppress blood glu-
cose, neuroprotective impact and an anti-dyslipidemic
[153]. Angeloni et al. [154] studied the bioactivity of
phenols derived from olive oil, finding its advantageous
effects in recovery from: ischemic brain injury,
Alzheimer’s, spinal cord injury and Parkinson’s diseases.

Based on the above reported bioactivities, it is
hereby opined that pigments obtained from vegetal
wastes and by-products can exhibit rich bioactivities.
Future research is warranted to explore the biological
potential of these pigments to be utilized in food,
pharmaceutical and cosmetic industrial applications.

Future prospects and conclusion

Vegetal wastes and/or by-products obtained from the
food bioprocessing industry remains as a major left-
over leading to environmental pollution. However,
these wastes and by-products can be a valuable and
promising source of natural pigments. New advances,
innovations and challenges in the extraction and appli-
cation of these natural pigments to harvest their poten-
tial in functional bioactive are the core focus of this
review. This review offers certain safe, potential, bio-
degradable, pigment alternatives to the currently used
artificial coloration paradigm, which are usually
extracted from renewable waste resources and by-prod-
ucts from fruits and vegetable industry. Recent investi-
gations on the extraction of natural pigments embrace
the quest for more innovative and financially feasible
resources, suitable extraction strategies, developments
in bioprocessing technologies, related innovations in
pigment stabilization, suitability of a method for a wide
range of pigments, to obtain a better quality of colors,
probability of developing pigment-enriched functional
foods and bioactives. To meet the current demands,
there is an urgent need for food industry to take steps
to minimize the vegetal waste to exploit the natural

pigments in a sustainable manner that are natural, cost-
effective, biodegradable and those which facilitates the
minimal production of harmful intermediates when
they enter the ecosystem and/or the food chain.

There is still ample scope for research activities that
can be undertaken to obtain a suitable, reliable alterna-
tive which is considered to be safe, highly efficient,
non-solvent based, environmentally friendly model
techniques for pigment extraction which can contribute
for higher extraction yields. The extraction of natural
pigments from vegetal wastes followed by the incorp-
oration of food products not only improves the color of
the food commodities but also enriches the antioxidant
capacity of food, aiding the health benefits by chelating
free radicals from the body when introduced in diets,
improving an esthetic appeal to consumers, raising the
monetary aspects for manufactures and the ultimate
benefits to the ecological atmosphere by reducing the
waste in the fruitful arena. Also, there is minimal infor-
mation available on the utilization of pigment-encapsu-
lated functional foods. Encapsulation of the natural
pigments can enhance the stability of these com-
pounds within the processing environment of a model
food system. Efforts need to be made to develop
greener technologies to extract natural pigments from
vegetal wastes, micro/nanoencapsulation techniques to
enrich the bioavailability and stability that can simultan-
eously provide health benefits. Thus, the selection of
greener technologies, suitable encapsulating material,
nature of the encapsulant, encapsulation methods,
nature of the core (natural pigment) material, process-
ing conditions suitable for natural pigments still
remains a challengeable constraint.

Finally, it is concluded that exploitation of natural
and health benefiting pigments from food wastes and
by-products not only helps to minimize the environ-
mental stress and supports the circular economy con-
cepts, but can also helps the economic gains to the
dependent industry.
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