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45 5. Synthesis and applications. Our results show how complex patterns of within-year

46 and among-year variation in exposure and efficacy of targeted conservation

47 interventions can arise and scale up to affect population-level outcomes. We

48 demonstrate positive effects of a major intervention, but also highlight potential routes

49 to improve efficacy, for example through more precise targeting of agricultural

50 management actions in the context of among-year variation in environmental

51 conditions.
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133 account for imperfect detection of individuals across time. This can be achieved using multi-

134 state mark-recapture models (White et al., 2006). Conceptually, such models consider that 

135 individuals can move between managed and unmanaged ‘states’ between discrete encounter 

136 occasions, and allow simultaneous estimation of exposure probabilities and exposure-

137 dependent survival probabilities for successive time intervals within years. Overall annual-

138 level effects can then be calculated. 

139 Accordingly, we applied multi-state mark-recapture models to eight years of intensive 

140 year-round resighting data from colour-ringed juvenile choughs to quantify variable juvenile 

141 exposure to management within and among years, and to estimate management efficacy in 

142 increasing within-year and annual juvenile survival. We then combined these estimates 

143 within matrix population projections to estimate overall impacts of the eight-year intervention 

144 on population size. We thereby provide the full, quantitative evaluation required to refine 

145 ongoing management. 

146

147 2. MATERIALS AND METHODS

148 2.1 Management intervention and demographic monitoring 

149 Supplementary feeding and parasite treatment protocols were designed to target juvenile 

150 choughs (Bignal & Bignal, 2011, Trask et al., 2020). Since juveniles typically move from 

151 natal territories to traditional communal foraging and roosting areas during the weeks 

152 following fledging (Figure 1a; Bignal et al., 1997), interventions were targeted in these 

153 communal areas (Appendix S1). In brief, supplementary food was provided near-daily during 

154 the non-breeding season (typically late-June to mid-April; Figure 1a; Bignal & Bignal, 2011) 

155 during eight annual biological cycles (2010-2011 to 2017-2018) within two broadly defined 

156 areas (termed feeding-area-1 and feeding-area-2, Appendix S1). Quantities of food (primarily 
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396 feeding increases individual condition sufficiently to improve parasite tolerance, and/or 

397 reduces consumption of natural ‘fallback’ prey with higher parasite transmission risk. 

398 However, during two years of higher observed annual survival (‘good-survival’ 

399 cohorts), there was no evident difference in survival probability between defined Fed and 

400 Unfed states, and hence no apparent effect of the intervention on juvenile survival. Studies on 

401 other systems concluded that, as generally makes intuitive sense, supplementary feeding may 

402 have less impact during periods of high natural food availability, when survival is not food-

403 limited (Ruffino et al., 2014; Sim et al., 2015). However, there are rarely data on natural food 

404 availability to investigate this possibility. In our system, the two ‘good-survival’ cohorts 

405 coincided with years of very high winter (post-fledging) tipulid larvae abundance, compared 

406 to the six ‘poor-survival’ cohorts (means 2,215x103±463x103SD and 876x103±442x103SD 

407 tipulids ha-1year-1 respectively, Appendix S3). The apparent lack of intervention impacts for 

408 ‘good-survival’ cohorts may therefore partly reflect better environmental conditions, resulting 

409 in high estimated winter survival for individuals in State-Unfed. While winter tipulid 

410 abundance cannot directly explain the lack of difference in survival between State-Fed and 

411 State-Unfed in July-September, it may indicate some form of correlated environmental 

412 conditions, such as availability of other invertebrate prey, or beneficial weather (Reid et al., 

413 2008). 

414 However, since transition probabilities to State-Fed were higher in ‘good-survival’ 

415 cohorts than ‘poor-survival’ cohorts, more individuals were exposed to the intervention and 

416 very few individuals remained in State-Unfed. The higher annual survival probability may 

417 therefore partly reflect these cohorts’ higher exposure to the intervention. The interannual 

418 (i.e. between cohort-groups) differences in transition probabilities could themselves reflect 

419 differences in environmental conditions and/or associated social behaviour, but may mean 

420 that intervention impacts on survival probabilities in ‘good-survival’ cohorts are undetectable 
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421 because so few individuals were in State-Unfed. Indeed, survival probabilities for State-

422 Unfed were estimated imprecisely, meaning that potential positive (or negative) intervention 

423 effects cannot be definitively excluded. Nevertheless, since estimated survival probabilities 

424 for the two states were near identical, the conclusion that they did not differ does not 

425 necessarily reflect low power. There was consequently no conclusive evidence that the 

426 observed increased exposure for ‘good-survival’ cohorts was solely responsible for their 

427 higher annual survival probabilities.

428 Overall, our estimation that the targeted intervention increased juvenile survival, 

429 primarily in years with low winter abundance of a key prey, supports the original inference 

430 that juvenile chough survival is food-limited (whether directly and/or indirectly through 

431 associated parasite exposure and social interactions). However, since the interventions were 

432 implemented as emergency responses rather than controlled randomised experiments, exact 

433 estimated effects, and inferences on underlying causes of variation, should be taken with 

434 appropriate caution. Our analyses cannot account for potential intrinsic differences between 

435 individuals that did and did not attend feeding areas at specific occasions. However, feeding 

436 took place at three separate locations (Appendix S1), and attendance was not strongly 

437 structured in relation to individuals’ natal locations. The apparent positive effect observed in 

438 the ‘poor-survival’ cohorts is perhaps intuitively unlikely to simply reflect quality, since 

439 individuals with higher mortality risk might be expected to use the supplementary food most. 

440 If that were true, our analyses could underestimate positive intervention effects. Nevertheless, 

441 at face value, our estimates suggest that the intervention effects on juvenile survival were 

442 sufficient to reduce (but not prevent) population decrease. Previous analyses showed that the 

443 intervention also had substantial collateral benefits, by increasing adult survival probability 

444 and components of reproductive success (Fenn et al., 2020). Together, these results imply 
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445 that the intervention successfully prevented a rapid population decline (Trask et al., 2019). 

446 Indeed, observed population size has been approximately stable since 2014.

447

448 4.1 Management implications and context

449 Proactive conservation should ideally iterate through cycles of evidence-based design, 

450 implementation and (re-)evaluation of targeted interventions (Sutherland et al., 2004), yet 

451 comparatively few conservation-focused studies evaluate intervention efficacy (Williams et 

452 al., 2020). Studies that do not evaluate variation in responses among seasons or years also 

453 risk providing misleading assessments. Our results suggest that responses to targeted 

454 supplementary feeding and parasite treatments are temporally variable, opening potential 

455 routes to further increase efficacy and cost-effectiveness. For example, the remaining period 

456 of low survival during July-September could potentially be further ameliorated by providing 

457 more food during this relatively short period, and/or implementing parasite treatments sooner 

458 after fledging. Since management had little detectable effect in some years, cost-effectiveness 

459 could in principle be improved by evaluating survival rates in autumn each year, and 

460 inferring whether food provisioning is warranted throughout the winter and spring. 

461 Furthermore, since not all juveniles experienced management, overall efficacy could 

462 potentially be increased through additional feeding sites. The current implementation was 

463 facilitated by chough social behaviour, whereby most sub-adults congregate in relatively 

464 discrete areas. Monitoring during the supplementary feeding programme has further 

465 increased understanding of post-fledging behaviour, which may help identify additional sites 

466 for future targeted feeding, although wider implementation may prove logistically difficult. 

467 Nevertheless, while intensive conservation interventions are often required to slow or 

468 prevent extinction of threatened populations (e.g. Oro et al., 2008), they are not necessarily 
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469 sustainable or desirable long-term. Supplementary feeding, and associated parasite 

470 treatments, should ideally only be enacted until habitat management to increase safe natural 

471 food resources is in place (Schoech et al., 2008). Long-term persistence of Scottish choughs 

472 will require targeted management initiatives that increase the availability, abundance, and 

473 spatial and temporal diversity of natural food in traditional chough foraging areas, 

474 particularly in key grassland and sand dune systems within nursery areas (Trask et al., 2020). 

475 Consequently, in common with other grassland bird species, effective, long-term 

476 conservation will ultimately rely on appropriate and effective land management programmes. 

477
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708
709 Figure 2: Test Model parameter estimates with 95% confidence intervals. a) State and 

710 time (within-year) dependent resighting probabilities. State, time and cohort (among-

711 year) dependent b&c) transition and d&e) survival probabilities in ‘poor-survival’ 

Page 33 of 82



34

712 (b&d) and ‘good-survival’ (c&e) cohorts. X-axis labels indicate the start date of each 

713 encounter occasion or interval. Points (jittered to aid visualisation) show transition or 

714 survival probabilities across corresponding intervals. The lower survival probability 

715 during January-May reflects the long interval. 

716
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717
718 Figure 3: Derived estimates (with 95% confidence intervals) of management impacts 

719 from the Test Model. Time (within-year) and cohort (among-year) dependent 

720 proportion of individuals alive in State-Fed, alive in State-Unfed, dead, or alive in fed 
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721 versus alive in unfed in a) ‘poor-survival’ and b) ‘good-survival’ cohorts. Multiplicative 

722 ‘realised’ survival probabilities compared to hypothetical ‘worst-case’ and ‘best-case’ 

723 scenarios for c) ‘poor-survival’ and d) ‘good-survival’ cohorts (annual-level 

724 probabilities highlighted by final points with asterisks). e) Estimated total population 

725 sizes across the intervention period (2010-2018) for each scenario (small and large 

726 points show ‘poor-survival’ and ‘good-survival’ cohorts respectively). Points are jittered 

727 to aid visualisation.

728
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55 Juvenile choughs fledge approximately six weeks post-hatch, and leave natal 

56 territories within a few weeks post-fledging (mid-late June) along with their parents to join 

57 sub-adult (i.e. pre-breeding) foraging and roosting flocks, which primarily occupy two 

58 traditional areas on Islay (Bignal et al., 1997). Adult choughs typically remain with young in 

59 these sub-adult flocks for some time, continuing to forage and feed their offspring for several 

60 weeks while juveniles learn to effectively forage for themselves. Adults then either return to 

61 their territories, or remain in the flock, but without maintaining direct care of offspring. 

62 Juveniles then remain in these sub-adult flocks year-round until acquiring breeding territories, 

63 typically aged 2-3 years (Bignal et al., 1997). All adults return to their territories each spring 

64 (March-May) for breeding, while sub-adult flocks remain in communal foraging and roosting 

65 areas. 

66 Sub-adult flocking areas and breeding territories were monitored during months 

67 immediately post-fledging (June-July), thereby maximising both sightings of individuals that 

68 had moved to communal foraging and roosting flock areas, and of those that had not. 

69 Subsequently, most observation effort focused on flocking areas (and in years of the 

70 supplementary feeding programme, primarily at supplementary feeding areas), but occasional 

71 surveys outside these areas also produced sightings of individuals which were not observed in 

72 sub-adult flocks. 

73 Previous mark-recapture analyses showed that juvenile annual survival varied 

74 considerably between years (Figure S1a), and identified key environmental drivers of 

75 juvenile survival (Reid et al., 2008), and a critical decline in survival between 2007-2009 to 

76 ~0.1 (Figure S1a; Reid et al., 2011) which prompted the emergency supplementary feeding 

77 intervention. Then, an updated mark-recapture analyses of age- and year dependent survival 

78 also showed that annual juvenile survival during the focal intervention period (2010-2018) 

79 also varied between years (Figure S1a), with years of lower survival (2010, 2011, 2014-2017; 
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80 here termed ‘poor-survival’ cohorts, average annual survival = 0.19±S.E. 0.02) and years of 

81 higher survival (2012 and 2013; termed ‘good-survival’ cohorts, average annual survival = 

82 0.38± S.E 0.01).

83

84

85 Figure S1: Estimated survival probabilities of juvenile choughs on Islay, Scotland (error 

86 bars: 95% confidence intervals) from previous published analyses. a) Annual juvenile 

87 survival probabilities, both before (circle points) and during (square and triangle points) 

88 the intervention period. Historically, survival was typically high (dark grey and blue 

89 points) but decreased substantially during 2007-2009 (red points). Annual survival 

90 probabilities during the intervention period varied, with years of lower survival (squares; 

91 ‘poor-survival’ cohorts, average annual survival = 0.19±S.E. 0.02) and years of higher 
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